Background and Purpose— We aimed to investigate the ability of machine learning (ML) techniques analyzing diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging to identify patients within the recommended time window for thrombolysis. Methods— We analyzed DWI and FLAIR images of consecutive patients with acute ischemic stroke within 24 hours of clear symptom onset by applying automatic image processing approaches. These processes included infarct segmentation, DWI, and FLAIR imaging registration and image feature extraction. A total of 89 vector features from each image sequence were captured and used in the ML. Three ML models were developed to estimate stroke onset time for binary classification (≤4.5 hours): logistic regression, support vector machine, and random forest. To evaluate the performance of ML models, the sensitivity and specificity for identifying patients within 4.5 hours were compared with the sensitivity and specificity of human readings of DWI-FLAIR mismatch. Results— Data from a total of 355 patients were analyzed. DWI-FLAIR mismatch from human readings identified patients within 4.5 hours of symptom onset with 48.5% sensitivity and 91.3% specificity. ML algorithms had significantly greater sensitivities than human readers (75.8% for logistic regression, P =0.020; 72.7% for support vector machine, P =0.033; 75.8% for random forest, P =0.013) in detecting patients within 4.5 hours, but their specificities were comparable (82.6% for logistic regression, P =0.157; 82.6% for support vector machine, P =0.157; 82.6% for random forest, P =0.157). Conclusions— ML algorithms using multiple magnetic resonance imaging features were feasible even more sensitive than human readings in identifying patients with stroke within the time window for acute thrombolysis.
We aimed to establish a high-performing and robust classification strategy, using magnetic resonance imaging (MRI), along with combinations of feature extraction and selection in human and machine learning using radiomics or deep features by employing a small dataset. Using diffusion and contrast-enhanced T1-weighted MR images obtained from patients with glioblastomas and primary central nervous system lymphomas, classification task was assigned to a combination of radiomic features and (1) supervised machine learning after feature selection or (2) multilayer perceptron (MLP) network; or MR image input without radiomic feature extraction to (3) two neuro-radiologists or (4) an end-to-end convolutional neural network (CNN). The results showed similar high performance in generalized linear model (GLM) classifier and MLP using radiomics features in the internal validation set, but MLP network remained robust in the external validation set obtained using different MRI protocols. CNN showed the lowest performance in both validation sets. Our results reveal that a combination of radiomic features and MLP network classifier serves a high-performing and generalizable model for classification task for a small dataset with heterogeneous MRI protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.