Tuberous sclerosis is a single-gene disorder caused by heterozygous mutations in the TSC1 (9q34) or TSC2 (16p13.3) gene and is frequently associated with mental retardation, autism and epilepsy. Even individuals with tuberous sclerosis and a normal intelligence quotient (approximately 50%) are commonly affected with specific neuropsychological problems, including long-term and working memory deficits. Here we report that mice with a heterozygous, inactivating mutation in the Tsc2 gene (Tsc2(+/-) mice) show deficits in learning and memory. Cognitive deficits in Tsc2(+/-) mice emerged in the absence of neuropathology and seizures, demonstrating that other disease mechanisms are involved. We show that hyperactive hippocampal mammalian target of rapamycin (mTOR) signaling led to abnormal long-term potentiation in the CA1 region of the hippocampus and consequently to deficits in hippocampal-dependent learning. These deficits included impairments in two spatial learning tasks and in contextual discrimination. Notably, we show that a brief treatment with the mTOR inhibitor rapamycin in adult mice rescues not only the synaptic plasticity, but also the behavioral deficits in this animal model of tuberous sclerosis. The results presented here reveal a biological basis for some of the cognitive deficits associated with tuberous sclerosis, and they show that treatment with mTOR antagonists ameliorates cognitive dysfunction in a mouse model of this disorder.
Inactivating mutations of the neurofibromatosis 2 (NF2) gene, NF2, result predominantly in benign neurological tumors, schwannomas and meningiomas, in humans; however, mutations in murine Nf2 lead to a broad spectrum of cancerous tumors. The tumor-suppressive function of the NF2 protein, merlin, a membranecytoskeleton linker, remains unclear. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a novel mediator of merlin's tumor suppressor activity. Merlin-deficient human meningioma cells and merlin knockdown arachnoidal cells, the nonneoplastic cell counterparts of meningiomas, exhibit rapamycin-sensitive constitutive mTORC1 activation and increased growth. NF2 patient tumors and Nf2-deficient mouse embryonic fibroblasts demonstrate elevated mTORC1 signaling. Conversely, the exogenous expression of wild-type merlin isoforms, but not a patient-derived L64P mutant, suppresses mTORC1 signaling. Merlin does not regulate mTORC1 via the established mechanism of phosphoinositide 3-kinase-Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase-mediated TSC2 inactivation and may instead regulate TSC/mTOR signaling in a novel fashion. In conclusion, the deregulation of mTORC1 activation underlies the aberrant growth and proliferation of NF2-associated tumors and may restrain the growth of these lesions through negative feedback mechanisms, suggesting that rapamycin in combination with phosphoinositide 3-kinase inhibitors may be therapeutic for NF2.
A destabilized tumor vasculature leads to limited drug delivery, hypoxia, detrimental tumor microenvironment, and even metastasis. We performed a side-by-side comparison of ABTAA (Ang2-Binding and Tie2-Activating Antibody) and ABA (Ang2-Blocking Antibody) in mice with orthotopically implanted glioma, with subcutaneously implanted Lewis lung carcinoma, and with spontaneous mammary cancer. We found that Tie2 activation induced tumor vascular normalization, leading to enhanced blood perfusion and chemotherapeutic drug delivery, markedly lessened lactate acidosis, and reduced tumor growth and metastasis. Moreover, ABTAA favorably altered the immune cell profile within tumors. Together, our findings establish that simultaneous Tie2 activation and Ang2 inhibition form a powerful therapeutic strategy to elicit a favorable tumor microenvironment and enhanced delivery of a chemotherapeutic agent into tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.