Although ultra high-performance concrete (UHPC) has great performance in strength and durability, it has a disadvantage in the environmental aspect; it contains a large amount of cement that is responsible for a high amount of CO2 emissions from UHPC. Supplementary cementitious materials (SCMs), industrial by-products or naturally occurring materials can help relieve the environmental burden by reducing the amount of cement in UHPC. This paper reviews the effect of SCMs on the properties of UHPC in the aspects of material properties and environmental impacts. It was found that various kinds of SCMs have been used in UHPC in the literature and they can be classified as slag, fly ash, limestone powder, metakaolin, and others. The effects of each SCM are discussed mainly on the early age compressive strength, the late age compressive strength, the workability, and the shrinkage of UHPC. It can be concluded that various forms of SCMs were successfully applied to UHPC possessing the material requirement of UHPC such as compressive strength. Finally, the analysis on the environmental impact of the UHPC mix designs with the SCMs is provided using embodied CO2 generated during the material production.
The vibration-reducing ability of construction materials is generally described by the damping ratio of the materials. Previously, many studies on the damping ratio of concrete have been done, such as the addition of rubber, polymer, fiber, and recycled aggregates in the concrete. However, the application of these materials in construction is limited due to their drawbacks. This paper investigated the effect of the replacement ratio and the size of the hollow glass microspheres (HGM), cenospheres (CS), and graphite flakes (GF) on the damping ratio of mortar. Furthermore, rubber particles (RP), aluminum powder (AP), and natural fiber (NF) were investigated to find if they have a combination effect with HGM. The half-power bandwidth method was conducted to obtain the damping ratio at 28 days of curing, and the compressive and flexural strength tests were also conducted to study the mechanical properties of mortar that contained HGM, CS, and GF. The results show that increases in the size of HGM and the replacement ratio of sand with HGM lead to an increase in the damping ratio. Moreover, RP and NF do not provide a combination effect with HGM on the damping ratio, whereas the application of AP results in a drastic compressive strength decrease even with an increase in damping ratio when incorporated with HGM. Besides, an increase in the replacement percentage of CS also leads to an improvement in the damping ratio, and a smaller size and higher replacement ratio of GFs can improve the damping ratio compared to other additives. As a result, CS and GF are more effective than HGM. 50% replacement ratio of CS slightly reduced the compressive strength by 6.4 MPa while improving the damping ratio by 15%, and 10% replacement ratio of samller GF can enhance the flexural strength by over 4.55% while increasing the damping ratio by 20.83%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.