DNA origami has proven useful for organizing diverse nanoscale components into patterns with 6 nm resolution. However for many applications, such as nanoelectronics, large-scale organization of origami into periodic lattices is desired. Here, we report the self-assembly of DNA origami rectangles into two-dimensional lattices based on stepwise control of surface diffusion, implemented by changing the concentrations of cations on the surface. Previous studies of DNA-mica binding identified the fractional surface density of divalent cationsñ s2 ð Þ as the parameter which best explains the behaviour of linear DNA on mica. We show that for n s2 between 0.04 and 0.1, over 90% of DNA rectangles were incorporated into lattices and that, compared with other functions of cation concentration,ñ s2 best captures the behaviour of DNA rectangles. This work shows how a physical understanding of DNA-mica binding can be used to guide studies of the higher-order assembly of DNA nanostructures, towards creating large-scale arrays of nanodevices for technology.
Analysis of the spatial arrangement of molecular features enables the engineering of synthetic nanostructures and the understanding of natural ones. The ability to acquire a comprehensive set of pairwise proximities between components would satisfy an increasing interest in investigating individual macromolecules and their interactions, but current biochemical techniques detect only a single proximity partner per probe. Here, we present a biochemical DNA nanoscopy method that records nanostructure features in situ and in detail for later readout. Based on a conceptually novel auto-cycling proximity recording (APR) mechanism, it continuously and repeatedly produces proximity records of any nearby pairs of DNA-barcoded probes, at physiological temperature, without altering the probes themselves. We demonstrate the production of dozens of records per probe, decode the spatial arrangements of 7 unique probes in a homogeneous sample, and repeatedly sample the same probes in different states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.