Two document representation methods are mainly used in solving text mining problems. Known for its intuitive and simple interpretability, the bag-ofwords method represents a document vector by its word frequencies. However, this method suffers from the curse of dimensionality, and fails to preserve accurate proximity information when the number of unique words increases. Furthermore, this method assumes every word to be independent, disregarding the impact of semantically similar words on preserving document proximity. On the other hand, doc2vec, a basic neural network model, creates low dimensional vectors that successfully preserve the proximity information. However, it loses the interpretability as meanings behind each feature is indescribable. This paper proposes the bag-of-concepts method as an alternative document representation method that overcomes the weaknesses of these two methods. This proposed method creates concepts through clustering word vectors generated from word2vec, and uses the frequencies of these concept clusters to represent document vectors. Through these data-driven concepts, the proposed method incorporates the impact of semantically similar ii words on preserving document proximity effectively. With appropriate weighting scheme such as concept frequency-inverse document frequency, the proposed method provides better document representation than previously suggested methods, and also offers intuitive interpretability behind the generated document vectors. Based on the proposed method, subsequently constructed text mining models, such as decision tree, can also provide interpretable and intuitive reasons on why certain collections of documents are different from others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.