Retinal degenerative disorders, including age-related macular degeneration and retinitis pigmentosa (RP), are characterized by the irreversible loss of photoreceptor cells and retinal pigment epithelial (RPE) cells; however, the long-term effect of implanting both human induced pluripotent stem cell (hiPSC)-derived RPE and photoreceptor for retinal regeneration has not yet been investigated. In this study, we evaluated the long-term effects of hiPSC-derived RPE and photoreceptor cell transplantation in Pde6b knockout rats to study RP; cells were injected into the subretinal space of the right eyes of rats before the appearance of signs of retinal degeneration at 2–3 weeks of age. Ten months after transplantation, we evaluated the cells using fundus photography, optical coherence tomography, and histological evaluation, and no abnormal cell proliferation was observed. A relatively large number of transplanted cells persisted during the first 4 months; subsequently, the number of these cells decreased gradually. Notably, immunohistochemical analysis revealed that the hiPSC-derived retinal cells showed characteristics of both RPE cells and photoreceptors of human origin after transplantation. Functional analysis of vision by scotopic electroretinogram revealed significant preservation of vision after transplantation. Our study suggests that the transplantation of hiPSC-derived retinal cells, including RPE cells and photoreceptors, has a potential therapeutic effect against irreversible retinal degenerative diseases.
Citation: Lee SHS, Chang H, Kim JH, et al. Inhibition of mTOR via an AAV-Delivered shRNA tested in a rat OIR model as a potential antiangiogenic gene therapy. Invest Ophthalmol Vis Sci. 2020;61(2):45. https://doi.org/10.1167/iovs.61.2.45 PURPOSE.Recent studies have shown that inhibitors of the mechanistic target of rapamycin (mTOR) play important roles in proliferating endothelial cells within the retinal vasculature. Here we explore the effects of inhibiting mTOR as a potential gene therapeutic against pathological retinal angiogenesis in a rat model of oxygen-induced retinopathy (OIR). METHODS.Sprague-Dawley pups were used to generate the OIR model, with a recombinant adeno-associated virus expressing an shRNA (rAAV2-shmTOR-GFP) being administered via intravitreal injection on returning the rats to normoxia, with appropriate controls. Immunohistochemistry and TUNEL assays, as well as fluorescein angiography, were performed on transverse retinal sections and flat mounts, respectively, to determine the in vivo effects of mTOR inhibition. RESULTS.Compared with normal control rats, as well as OIR model animals that were either untreated (20.95 ± 6.85), mock-treated (14.50 ± 2.47), or injected with a control short hairpin RNA (shRNA)-containing virus vector (16.64 ± 4.92), rAAV2-shmTOR-GFP (4.28 ± 2.86, P = 0.00103) treatment resulted in dramatically reduced neovascularization as a percentage of total retinal area. These results mirrored quantifications of retinal avascular area and vessel tortuosity, with rAAV2-shmTOR-GFP exhibiting significantly greater therapeutic efficacy than the other treatments. The virus vector was additionally shown to reduce inflammatory cell infiltration into retinal tissue and possess antiapoptotic properties, both these processes having been implicated in the pathophysiology of angiogenic retinal disorders. CONCLUSIONS.Taken together, these results demonstrate the strong promise of rAAV2-shmTOR-GFP as an effective and convenient gene therapy for the treatment of neovascular retinal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.