Cast-in-place bridge decks cause issues such as traffic congestion, dust, noise, and air pollution at the construction site. Precast bridge deck systems address these issues by facilitating the installation of prefabricated concrete units on site. However, as cracking and leakage problems have been recently observed in the longitudinal joints that connect the precast bridge deck units of existing bridges, evaluations of the connectivity and constructability of such joints are essential. Consequently, this study experimentally investigated the structural performance of longitudinal joint configurations of six precast bridge decks with varying joint widths, steel plate configurations, and rebar details to determine the optimal joint configuration. A tensile load was applied to each joint specimen, and the resulting relative displacement across the joint was measured. Subsequently, a finite element model of the optimal joint specimen was developed and determined to exhibit behavior under loads similar to that observed during the test, confirming the ability of finite element analyses to accurately predict the behavior of such joints. The results of this study are expected to improve designs for the longitudinal joints of precast bridge deck systems, facilitating expedited bridge construction, while minimizing construction impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.