ObjectivesThis study aimed to compare the outcome of endoscopic and microscopic tympanoplasty.MethodsThis was a retrospective comparative study of 73 patients (35 males and 38 females) who underwent type I tympanoplasty at Samsung Medical Center from April to December 2014. The subjects were classified into two groups; endoscopic tympanoplasty (ET, n=25), microscopic tympanoplasty (MT, n=48). Demographic data, perforation size of tympanic membrane at preoperative state, pure tone audiometric results preoperatively and 3 months postoperatively, operation time, sequential postoperative pain scale (NRS-11), and graft success rate were evaluated.ResultsThe perforation size of the tympanic membrane in ET and MT group was 25.3%±11.7% and 20.1%±11.9%, respectively (P=0.074). Mean operation time of MT (88.9±28.5 minutes) was longer than that of the ET (68.2±22.1 minutes) with a statistical significance (P=0.002). External auditory canal (EAC) width was shorter in the ET group than in the MT group (P=0.011). However, EAC widening was not necessary in the ET group and was performed in 33.3% of patients in the MT group. Graft success rate in the ET and MT group were 100% and 95.8%, respectively; the values were not significantly different (P=0.304). Pre- and postoperative audiometric results including bone and air conduction thresholds and air-bone gap were not significantly different between the groups. In all groups, the postoperative air-bone gap was significantly improved compared to the preoperative air-bone gap. Immediate postoperative pain was similar between the groups. However, pain of 1 day after surgery was significantly less in the ET group.ConclusionWith endoscopic system, minimal invasive tympanoplasty can be possible with similar graft success rate and less pain.
In a mass casualty incident, the factors that determine the survival rate of injured patients are diverse, but one of the key factors is the time for triage. Additionally, the main factor that determines the time of triage is the number of medical personnel. However, when relying on a small number of medical personnel, the ability to increase survivability is limited. Therefore, developing a classification model for survival prediction that can quickly and precisely triage via wearable devices without medical personnel is important. In this study, we designed a consciousness index to substitute the factor by manpower and improved the classification accuracy by applying a machine learning algorithm. First, logistic regression analysis using vital signs and a consciousness index capable of remote monitoring through wearable devices confirmed the high efficiency of the consciousness index. We then developed a classification model with high accuracy which corresponds to existing injury severity scoring systems through the machine learning algorithms. We extracted 460,865 cases which met our criteria for developing the survival prediction from the national sample project in the national trauma databank which contains 408,316 cases of blunt injury and 52,549 cases of penetrating injury. Among the dataset, 17,918 (3.9%) cases died while the other survived. The AUCs with 95% confidence intervals (CIs) for the different models with the proposed simplified consciousness score as follows: RTS (as baseline), 0.78 (95% CI = 0.775 to 0.785); logistic regression, 0.87 (95% CI = 0.862 to 0.870); random forest, 0.87 (95% CI = 0.862 to 0.872); deep neural network, 0.89 (95% CI = 0.882 to 0.890). As a result, we confirmed the possibility of remote triage using a wearable device. It is expected that the time required for triage can be effectively reduced by using the developed classification model of survival prediction.
In order to provide more consistent sound intelligibility for the hearing-impaired person, regardless of environment, it is necessary to adjust the setting of the hearing-support (HS) device to accommodate various environmental circumstances. In this study, a fully automatic HS device management algorithm that can adapt to various environmental situations is proposed; it is composed of a listening-situation classifier, a noise-type classifier, an adaptive noise-reduction algorithm, and a management algorithm that can selectively turn on/off one or more of the three basic algorithms-beamforming, noise-reduction, and feedback cancellation-and can also adjust internal gains and parameters of the wide-dynamic-range compression (WDRC) and noise-reduction (NR) algorithms in accordance with variations in environmental situations. Experimental results demonstrated that the implemented algorithms can classify both listening situation and ambient noise type situations with high accuracies (92.8-96.4% and 90.9-99.4%, respectively), and the gains and parameters of the WDRC and NR algorithms were successfully adjusted according to variations in environmental situation. The average values of signal-to-noise ratio (SNR), frequency-weighted segmental SNR, Perceptual Evaluation of Speech Quality, and mean opinion test scores of 10 normal-hearing volunteers of the adaptive multiband spectral subtraction (MBSS) algorithm were improved by 1.74 dB, 2.11 dB, 0.49, and 0.68, respectively, compared to the conventional fixed-parameter MBSS algorithm. These results indicate that the proposed environment-adaptive management algorithm can be applied to HS devices to improve sound intelligibility for hearing-impaired individuals in various acoustic environments.
Objectives In an effort to improve hearing aid users’ satisfaction, recent studies on trainable hearing aids have attempted to implement one or two environmental factors into training. However, it would be more beneficial to train the device based on the owner’s personal preferences in a more expanded environmental acoustic conditions. Our study aimed at developing a trainable hearing aid algorithm that can reflect the user’s individual preferences in a more extensive environmental acoustic conditions (ambient sound level, listening situation, and degree of noise suppression) and evaluated the perceptual benefit of the proposed algorithm.Methods Ten normal hearing subjects participated in this study. Each subjects trained the algorithm to their personal preference and the trained data was used to record test sounds in three different settings to be utilized to evaluate the perceptual benefit of the proposed algorithm by performing the Comparison Mean Opinion Score test.Results Statistical analysis revealed that of the 10 subjects, four showed significant differences in amplification constant settings between the noise-only and speech-in-noise situation (P<0.05) and one subject also showed significant difference between the speech-only and speech-in-noise situation (P<0.05). Additionally, every subject preferred different β settings for beamforming in all different input sound levels.Conclusion The positive findings from this study suggested that the proposed algorithm has potential to improve hearing aid users’ personal satisfaction under various ambient situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.