We systematically study the short range spectral fluctuation properties of three non-hermitian spin chain hamiltonians using complex spacing ratios. In particular we focus on the non-hermitian version of the standard one-dimensional anisotropic XY model having intrinsic rotation-time-reversal (RT ) symmetry that has been explored analytically by Zhang and Song in [Phys.Rev.A 87, 012114 (2013)]. The corresponding hermitian counterpart is also exactly solvable and has been widely employed as a toy model in several condensed matter physics problems. We show that the presence of a random field along the x-direction together with the one along z facilitates integrability and RT -symmetry breaking leading to the emergence of quantum chaotic behaviour indicated by a spectral crossover resembling Poissonian to Ginibre unitary ensemble (GinUE) statistics of random matrix theory. Additionally, we consider two n × n dimensional phenomenological random matrix models in which, depending upon crossover parameters, the fluctuation properties measured by the complex spacing ratios show an interpolation between 1D-Poisson to GinUE and 2D-Poisson to GinUE behaviour. Here 1D and 2D Poisson correspond to real and complex uncorrelated levels, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.