As sensors and flow control actuators become smaller, cheaper, and more pervasive, the use of feedback control to manipulate the details of fluid flows becomes increasingly attractive. One of the challenges is to develop mathematical models that describe the fluid physics relevant to the task at hand, while neglecting irrelevant details of the flow in order to remain computationally tractable. A number of techniques are presently used to develop such reduced-order models, such as proper orthogonal decomposition (POD), and approximate snapshot-based balanced truncation, also known as balanced POD. Each method has its strengths and weaknesses: for instance, POD models can behave unpredictably and perform poorly, but they can be computed directly from experimental data; approximate balanced truncation often produces vastly superior models to POD, but requires data from adjoint simulations, and thus cannot be applied to experimental data.In this paper, we show that using the Eigensystem Realization Algorithm (ERA) [15], one can theoretically obtain exactly the same reduced order models as by balanced POD. Moreover, the models can be obtained directly from experimental data, without the use of adjoint information. The algorithm can also substantially improve computational efficiency when forming reduced-order models from simulation data. If adjoint information is available, then balanced POD has some advantages over ERA: for instance, it produces modes that are useful for multiple purposes, and the method has been generalized to unstable systems. We also present a modified ERA procedure that produces modes without adjoint information, but for this procedure, the resulting models are not balanced, and do not perform as well in examples. We present a detailed comparison of the methods, and illustrate them on an example of the flow past an inclined flat plate at a low Reynolds number.
We present an estimator-based control design procedure for flow control, using reduced-order models of the governing equations, linearized about a possibly unstable steady state. The reduced-order models are obtained using an approximate balanced truncation method that retains the most controllable and observable modes of the system. The original method is valid only for stable linear systems, and in this paper, we present an extension to unstable linear systems. The dynamics on the unstable subspace are represented by projecting the original equations onto the global unstable eigenmodes, assumed to be small in number. A snapshot-based algorithm is developed, using approximate balanced truncation, for obtaining a reduced-order model of the dynamics on the stable subspace.The proposed algorithm is used to study feedback control of two-dimensional flow over a flat plate at a low Reynolds number and at large angles of attack, where the natural flow is vortex shedding, though there also exists an unstable steady state. For control design, we derive reduced-order models valid in the neighborhood of this unstable steady state. The actuation is modeled as a localized body force near the leading edge of the flat plate, and the sensors are two velocity measurements in the near-wake of the plate. A reduced-order Kalman filter is developed based on these models and is shown to accurately reconstruct the flow field from the sensor measurements, and the resulting estimator-based control is shown to stabilize the unstable steady state. For small perturbations of the steady state, the model accurately predicts the response of the full simulation. Furthermore, the resulting controller is even able to suppress the stable periodic vortex shedding, where the nonlinear effects are strong, thus implying a large domain of attraction of the stabilized steady state.
When an airfoil is pitched up rapidly, a dynamic stall vortex forms at the leading edge and produces high transient lift before shedding and stall occur. The aim of this work is to develop low-dimensional models of the dynamics of these leading-edge vortices, which may be used to develop feedback laws to stabilize these vortices using closed-loop control, and maintain high lift. We first perform a numerical study of the two-dimensional incompressible flow past an airfoil at varying angles of attack, finding steady states using a timestepper-based Newton/GMRES scheme, and dominant eigenvectors using ARPACK. These steady states may be either stable or unstable; we develop models linearized about the stable steady states using a method called Balanced Proper Orthogonal Decomposition, an approximation of balanced truncation that is tractable for large systems. The balanced POD models dramatically outperform models using the standard POD/Galerkin procedure, and are used to develop observers that reconstruct the flow state from a single surface pressure measurement.
When the angle of attack of an airfoil is gradually increased at low Reynolds numbers, the flow undergoes a Hopf bifurcation wherein the steady state loses stability in a transition to periodic vortex shedding. The goal of this work is to stabilize these unstable steady states using feedback control. For that purpose, we derive reduced order models valid in the neighborhood of these unstable steady states, using an approximate balanced truncation method valid for large dimensional systems. The original method is valid only for stable systems, and here we present a modification to derive models for unstable sytems, and use the same along with standard linear control techniques such as Linear Quadratic Regulator (LQR) to obtain stabilizing control laws. We use full-state feedback to stabilize an unstable steady state of a two-dimensional flow past a past flat plate at an angle of attack of 35 degrees. We also present observers that reconstruct the entire flow-field based on the flat-plate lift and drag measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.