The objective of this paper is to present experimental evidence of the wave nature of heat propagation in processed meat and to demonstrate that the hyperbolic heat conduction model is an accurate representation, on a macroscopic level, of the heat conduction process in such biological material. The value of the characteristic thermal time of a specific material, processed bologna meat, is determined experimentally. As a part of the work different thermophysical properties are also measured. The measured temperature distributions in the samples are compared with the Fourier results and significant deviation between the two is observed, especially during the initial stages of the transient conduction process. The measured values are found to match the theoretical non-Fourier hyperbolic predictions very well. The superposition of waves occurring inside the meat sample due to the hyperbolic nature of heat conduction is also proved experimentally.
The discrete-ordinates method is formulated to solve transient radiative transfer with the incorporation of a transient term in the transfer equation in two-dimensional rectangular enclosures containing absorbing, emitting, and anisotropically scattering media subject to diffuse and/or collimated laser irradiation. The governing equations resulting from the discrete-ordinates discretization of the angular directions are further discretized in the spatial and the temporal domains by the finite-volume approach. The current formulation is suitable for solving transient laser transport in turbid media as well as for steady-state radiative transfer in many engineering problems. The method is applied to several example problems and compared with existing steady-state solutions and Monte Carlo transient solutions. Good agreement is found in all cases. Short-pulsed laser interaction and propagation in a turbid medium with high scattering albedo are studied. The imaging of an inhomogeneous zone inside a turbid medium is demonstrated.
A complete transient three-dimensional discrete ordinates method is formulated for the rst time to solve transient radiative transfer in a rectangular enclosure containing nonhomogeneous media that absorb, emit, and scatter. Twofold validation of the transient method is obtained: First, there is an excellent agreement between its results at long time stage with several steady-state solution methods. Second, the transient predictions of transmittance and re ectance compare very well with Monte Carlo simulations. The sensitivity and accuracy of the transient method against the sizes of time increment and grid cell and angular discrete order are examined. The false radiation propagation and numerical diffusion associated with the differencing schemes are discussed. Calculations show the behavior of the wave nature of propagation of transient radiation. The transient behavior of radiation is found to be in uenced by many parameters, such as the boundary conditions, the optical thickness of the medium, the scattering albedo, and the incident radiation pulse width. Duhamel's superposition theorem is also applied to obtain the transient response to different temporal input pulses.
We examine the transport of short light pulses through scattering-absorbing media through different approximate mathematical models. It is demonstrated that the predicted optical signal characteristics are significantly influenced by the various models considered, such as P(N) expansion, two-flux, and discrete ordinates. The effective propagation speed of the scattered radiation, the predicted magnitudes of the transmitted and backscattered fluxes, and the temporal shape and spread of the optical signals are functions of the models used to represent the intensity distributions. A computationally intensive direct numerical integration scheme that does not utilize approximations is also implemented for comparison. Results of some of the models asymptotically approach those of direct numerical simulation if the order of approximation is increased. In this study therefore we identify the importance of model selection in analyzing short-pulse laser applications such as optical tomography and remote sensing and highlight the parameters, such as wave speed, that must be examined before a model is adopted for analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.