Purpose The purpose of this paper is to review the advanced technologies and approaches for utilization of waste generated in dairy industry. Whey is highly contaminated, with a high organic load around 100,000 mg O2/L COD (chemical oxygen demand), and is not used for further processing. The waste generated in different food industries can be utilized in different value addition product with the help of advanced technology. Design/methodology/approach Major well-known bibliometric information sources are the Web of Science, Scopus, Mendeley and Google Scholar. Several keywords like nutrition value of whey, whey utilization, whey valorization, whey technologies, whey beverages, fruit-based whey beverage, carbonated beverage, probiotic or alcoholic beverages, herbal beverage, fermented beverage and current scenarios were chosen to obtain a large range of papers to be analyzed. A final inventory of 126 scientific sources was made after sorting and classifying them according to different criteria based on topic, academic field country of origin and year of publication. Findings The comprehensive review of different literature, data sources and research papers seeks to find and discuss various sustainable solutions to this huge waste generated from milk industry. The sustainable use of whey for production and conversion in different types of products can uplift the bio-based economy of industries and thereof national/international economy. The recent upsurge in consumer interest for health-promoting products has opened up new vistas for whey beverages and other whey products research and development. Originality/value The paper draws out different sustainable characteristics and technology of whey products available in market, as well as potential products to be launched in the market. Interestingly, over the past few years, dairy industries have applied various technologies to process cheese whey and are in search of new products which can be prepared from the by-product. This review discusses on the recent research development of whey valorization with particular reference to technologies used in the addition to their commercial availability and a way forward.
Ultrasound, an emerging non-thermal technique, has potential to modify the functionality of bio-molecules like protein. In the present study, the impact of ultrasound on whey protein (WP) was assessed with functional, rheological, heat coagulation and transition temperature, SDS-PAGE, FTIR spectra, scanning electron microscopy and transmission electron microscopy. The results of this study showed that the raw WP had broad bimodal particle size distribution while after ultrasonication, modified WP exhibited narrower distribution along with smaller particle size (0.683 ± 0.225 μm) compared to untreated WP (2.453 ± 0.717 μm). The solubility of WP also increased after ultrasonication (72.22 ± 0.68% to 79.21 ± 1.08%). During the rheological evaluation, both the samples exhibited Newtonian behaviour but, the modified WP exhibited dramatically higher storage modulus (G') throughout the temperature profile compared to raw WP mainly due to enhanced proteins aggregation during heating which revealed more elastic and stronger gel. The modified WP exhibited significantly higher (about 6-times) heat stability compared to raw WP which signified that after ultrasonication the WP can withstand higher temperature during processing for longer time. The results were also confirmed by higher transition temperature (T) of modified WP (93.32°) compared to untreated WP (81.93 °C). The SDS-PAGE profile of raw and modified WP showed that the ultrasound significantly decreased the bands density of low molecular weight molecules (β-lactoglobulin and α-lactalbumin). FTIR spectra also showed noticeable difference between the secondary structure component of raw and modified WP. Finally, the structural micrographs of raw and modified WP from SEM and TEM analysis also confirmed the adequacy of modification of WP employing non-thermal techniques. The modified WP revealed smaller, regular and more homogenous and ordered structures compared to untreated sample.
Purpose The purpose of this paper is to review the nutritional and food value of pumpkin Cucurbita, along with different health benefits. Cucurbita (pumpkin) is an herbaceous vine, member of Cucurbitaceae family. It is an edible, heat-sensitive plant, which has an abundant amount of active compounds such as carotenoids, alkaloids, flavonoids, polyphenols, tannins, tocopherols, phytosterols and cucurbitacin, accounted for numerous health benefits, namely, antidiabetic, antioxidant, anticarcinogenic, hypotensive, hyper protective activities. Design/methodology/approach Major well-known bibliometric information sources such as Web of Science, Scopus, Mendeley and Google Scholar were searched with keywords such as nutrition value of Cucurbita, Cucurbita utilization, bioactive compounds of pumpkin, health benefits, processing, food formulations and current scenarios were chosen to obtain a large range of papers to be analyzed. A final inventory of 105 scientific sources was made after sorting and classifying them according to different criteria based on topic, academic field, country of origin and year of publication. Findings The comprehensive review of different literature, data sources and research papers seeks to find and discuss various nutritional benefits of pumpkin. It contains all necessary macro- and micro-nutrients, amino acids, vitamins, antioxidants and bioactive compounds with a relatively low amount of antinutrients. The recent upsurge in consumer interest for health-promoting products has opened up new vistas for plant products containing bioactive compounds in different food formulations. Originality/value This paper contains information regarding the chemical composition, nutritive value, phytochemical studies, pharmacological properties, bio-accessibility, food and industrial applications of pumpkin. Worldwide, pumpkin is used as food additive in various food products such as candy, weaning mix, corn grits, kheer, jam, crackers, bread, etc. Effect of different processing methods such as high temperature, pH, blanching, oven drying, freeze-drying to retain or minimize its losses in case of color, texture, flavor, and the carotenoids are of concern. The review paper highlights the nutritional, therapeutic, potential and processing attributes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.