Considering quinoxaline as a privileged structure for the design of potent intercalating agents, some new sugar conjugates of quinoxaline were synthesized and characterized by IR, 1HNMR, 13C NMR, and mass spectral data. In vitro testing for antitubercular and antimicrobial activities was performed against Mycobacterium tuberculosis H
37
Rv and some pathogenic bacteria. Results revealed that conjugate containing ribose moiety demonstrated the most promising activity against Mycobacteria and bacteria with minimum inhibitory concentrations (MIC) of 0.65 and 2.07 μM, respectively. Other conjugates from xylose, glucose, and mannose were moderately active whilst disaccharides conjugates were found to be less active. In silico docking analysis of prototype compound revealed that ATP site of DNA gyrase B subunit could be a possible site for inhibitory action of these synthesized compounds.
A new route for the expedient synthesis of specific regioisomer of quinazolinone- and phenanthridine-fused heterocycles through a palladium-catalyzed regioselective intramolecular oxidative C-H amination from cyclic strained amides of aromatic amido-amidine systems (quinazolinones) has been developed. The amine functionalization of an aromatic C-H bond from a strained amide nitrogen involved in aromaticity has been a challenging work so far. The fusion of two heterocyclic cores, quinazolinone and phenanthridine, can occur in two different ways (linear and angular), but under the conditions reported here, only linear type isomer is exclusively produced. This approach provides a variety of substituted quinazolinone- and phenanthridine-fused derivatives in moderate to excellent yields. Moreover, such fused molecules show excellent fluorescent properties and have great potential to be a new type of fluorophores for the use in medicinal and material science.
We report a palladium‐catalyzed method for the direct synthesis of phenanthridones from benzamides in a single step. Unlike previous reports, the current protocol does not need any directing groups or any harsh conditions. This methodology has a wide functional group tolerance therefore a series of phenanthridones were synthesized with a yield up to 87 %. The efficacy of this protocol was further explored by synthesizing some important naturally occurring amaryllidaceae alkaloids in a single step with very good yields.
‘Click reactions’ are the copper catalysed dipolar cycloaddition reaction of azides and alkynes to incorporate nitrogens into a cyclic hydrocarbon scaffold forming a triazole ring. Owing to its efficiency and versatility, this reaction and the products, triazole-containing heterocycles, have immense importance in medicinal chemistry. Copper is the only known catalyst to carry out this reaction, the mechanism of which remains unclear. We report here that the ‘click reactions’ can also be catalysed by silver halides in non-aqueous medium. It constitutes an alternative to the well-known CuAAC click reaction. The yield of the reaction varies on the type of counter ion present in the silver salt. This reaction exhibits significant features, such as high regioselectivity, mild reaction conditions, easy availability of substrates and reasonably good yields. In this communication, the findings of a new catalyst along with the effect of solvent and counter ions will help to decipher the still obscure mechanism of this important reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.