A thick film of P(VDF-TrFE) piezoelectric polymer and a 48%nickel-iron (48%NiFe) alloy is employed to form a magnetoelectric (ME) layered composite to attain a ME coupling coefficient
α
ME
as high as 1002 mV cm−1 Oe−1. Theoretical analysis indicates a significant strain transfer of close to 79%. Compared with P(VDF-TrFE)/nickel bilayer laminate composite, 48%NiFe alloy shows an enhancement of
α
ME
by 53% due to the high piezomagnetic coefficient. Additionally, finite element methodology simulation using COMSOL® Multiphysics is used to corroborate the experimental results and theoretical estimates. The energy harvesting application is demonstrated by measuring the voltage from the laminate composite atop a small cooling fan, which produces a peak-to-peak ac voltage of 0.868 V. Comparative analysis with P(VDF-TrFE)/nickel bilayer laminate this value is 54% higher proving that the developed laminate composite is an efficient ME based energy harvester.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.