Cyclic RGD peptide anchored sterically stabilized liposomes (RGD-SL) were investigated for selective and preferential presentation of carrier contents at angiogenic endothelial cells overexpressing alphavbeta3 integrins on and around tumor tissue and thus for assessing their targetabilty. Liposomes were prepared using distearoylphosphatidylcholine (DSPC), cholesterol and distearoylphosphatidylethanolamine-polyethyleneglycol-RGD peptide conjugate (DSPE-PEG-RGD) in a molar ratio 56:39:5. The control RAD peptide anchored sterically stabilized liposomes (RAD-SL) and liposome with 5 mol% PEG (SL) without peptide conjugate which had similar lipid composition were used for comparison. The average size of all liposome preparations prepared was approximately 105 nm and maximum drug entrapment was 10.5+/- 1.1%. In vitro endothelial cell binding of liposomes exhibited 7-fold higher binding of RGD-SL to HUVEC in comparison to the SL and RAD-SL. Spontaneous lung metastasis and angiogenesis assays show that RGD peptide anchored liposomes are significantly (p<0.01) effective in the prevention of lung metastasis and angiogenesis compared to free 5-FU, SL and RAD-SL. In therapeutic experiments, 5-FU, SL, RGD-SL and RAD-SL were administered intravenously on day 4 at the dose of 10 mg 5-FU/kg body weight to B16F10 tumor bearing BALB/c mice resulting in effective regression of tumors compared with free 5-FU, SL and RAD-SL. Results indicate that cyclic RGD peptide anchored sterically stabilized liposomes bearing 5-FU are significantly (p<0.01) active against primary tumor and metastasis than the non-targeted sterically stabilized liposomes and free drug. Thus cyclic RGD peptide anchored sterically stabilized liposomes hold potential of targeted cancer chemotherapeutics.
Hydrophilic drugs/peptides have poor cross Blood-brain permeability. Various drug delivery systems with diverse surfacial characteristics have been reported for effective translocation of drugs across Blood-brain barrier. In present investigation, the potential of engineered albumin nanoparticles was evaluated for brain specific delivery after intravenous administration. Long circulatory PEGylated albumin nanoparticles encapsulating water-soluble antiviral drug azidothymidine (AZT) were prepared by ultra-emulsification method using chemical cross-linking by glutaraldehyde. Surface of the PEGylated nanoparticles was modified by anchoring transferrin as a ligand for brain targeting. Nanoparticles were characterized for their size, polydispersity, surfacial charge, drug loading and in vitro drug release. Fluorescence studies revealed the enhanced uptake of transferrin-anchored nanoparticles in the brain tissues when compared with unmodified nanoparticles. In vivo evaluation was carried out on albino rats to evaluate tissue distribution of engineered nanoparticles after intravenous administration. A significant ((*)P < 0.01) enhancement of brain localization of AZT was observed for transferrin anchored pegylated albumin nanopariticles (Tf-PEG-NPs). Hence, the specific role of transferrin ligand on nanoparticles for brain targeting was confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.