The possibility of using Aspergillus terreus protease in detergent formulations was investigated. Sodium dodecyl sulfate (SDS) and native polyacrylamide gel electrophoresis indicated that the purified alkaline protease (148.9 U/mg) is a monomeric enzyme with a molecular mass of 16 ± 1 kDa. This was confirmed by liquid chromatography–mass spectrometry. The active enzyme degraded the co-polymerized gelatin. The protease demonstrated excellent stability at pH range 8.0–12.0 with optimum at pH 11.0. It was almost 100 % stable at 50 °C for 24 h, enhanced by Ca2+ and Mg2+, but inhibited by Hg2+, and strongly inhibited by phenylmethyl sulfonyl fluoride. It showed maximum activity against casein followed by gelatin; its Vmax was 12.8 U/ml with its corresponding KM of 5.4 mg/ml. The proteolytic activity was activated by Tween-80, Triton-100 and SDS, and remained unaltered in the presence of H2O2 and NaClO. The enzyme exhibited higher storage stability at 4, 28 and −20 °C. It was stable and compatible to the desired level in the local detergents. The addition of the protease to the Super wheel improved its blood stain removal. The isolated protease can thus be a choice option in detergent industry.
Invertase or β-D-fructofuranoside fructohydrolase (EC 3.2.1.26) was one of the foremost enzyme biocatalysts and established the primary concepts of most enzyme-kinetic principles. Invertases are glycoside hydrolases and occur mostly in microorganisms. Among microbial strains, for many decades yeast species have been extensively researched for invertase production, characterization, and applications in industries. Besides, limited literature is available on invertases from bacterial strains. The enzymic and molecular biological reports from bacterial invertases are scarce. In this minireview, occurrence, production, biochemical properties, and significance of transfructosylation of bacterial invertases are reported.
This study focused on the purification and characterization of an extracellular β-d-fructofuranosidase or invertase from JU12. The protein was purified by size exclusion chromatography with 5.41 fold and 10.87% recovery. The apparent molecular mass of the enzyme was estimated to be ~ 35 kDa using SDS-PAGE and confirmed by deconvoluted mass spectrometry. The fungal β-d-fructofuranosidase was suggested to be a monomer by native PAGE and zymography, and was found to be a glycoprotein possessing 68.92% carbohydrate content. The products of enzyme hydrolysis were detected by thin layer chromatography and revealed the monosaccharide units, d-glucose and d-fructose. β-d-fructofuranosidase showed enhanced activity at broad pH 4.0-9.0 and activity at a temperature range from 30 to 70 °C, while the enzyme was stable at pH 8.0 and 40 °C, respectively. The β-d-fructofuranosidase activity was lowered by metal ion inhibitors Ag and Hg whereas elevated by SDS and β-ME. The fungal β-d-fructofuranosidase was capable of hydrolyzing d-sucrose and the kinetics were determined by Lineweaver-Burk plot with of 10.17 mM and of 0.7801 µmol min. Additionally, the extracellular β-d-fructofuranosidase demonstrated tolerance to high ethanol concentrations indicating its applicability in the production of alcoholic fermentation processes.
Bionanotechnology is a branch of science that has revolutionized modern science and technology. Nanomaterials, especially noble metals, have attracted researchers due to their size and application in different branches of sciences that benefit humanity. Metal nanoparticles can be synthesized using green methods, which are good for the environment, economically viable, and facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles (NPs), which have been generated using various materials. On the other hand, chemically produced nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials′ tunable features make them sophisticated tools in the biomedical platform, especially for developing new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders. Therefore, this review outlines the theranostic approach, the different plant materials utilized in theranostic applications, and future directions based on current breakthroughs in these fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.