Traditionally Envelope Detection (ED) is implemented for detection of rolling element bearing faults by extracting the envelope of band-passed vibration signal and thereafter taking its Fourier transform. The performance of ED is highly sensitive to the envelope window (i.e. central frequency and bandwidth of the passband). This paper employs Particle Swarm Optimisation (PSO) to select the most optimum envelope window to band pass the vibration signals emanating from rotating driveline that was run in normal and with faults induced rolling element bearings. The envelopes of band-passed signals were extracted with the help of Hilbert Transform. The performance of ED whose envelope window was optimised by PSO to identify various commonly occurring bearing faults such as bearing with Outer Race Fault (ORF), Inner Race Fault (IRF) and Rolling Element Fault (REF) were checked under varying load conditions. The performance of ‘ED enhanced by PSO’ was also checked with increase in the severity of defect. It was shown that the improved ED method is successfully able to identify all types of bearing faults under different load conditions. It was shown that the by selecting envelope window by PSO makes ED especially useful to identify bearing faults at the incipient stage of defect. It was also shown by presenting comparative performance that by optimising the envelope window by PSO the performance of ED gets significantly enhanced in comparison to the traditional ED method for bearing fault diagnosis.
Effectiveness of transient analysis of the finite element bearing model to simulate the vibration signal emanating from ball bearing with faults is presented in this work. It is difficult to identify the ball bearing defect either in frequency spectrum or time domain when the defect is at incipient stage. Further, it is difficult to experimentally obtain vibration signals from bearing having fault at incipient stage. Thus, need for accurate simulation of ball bearing fault at incipient stage is considered essential. A Computer Aided Design (CAD) model of a ball bearing having a minor crack in outer-race was created using commercially available software. It was shown that identification of ball bearing defect in frequency spectrum is difficult. The results were validated with experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.