Protein tyrosine phosphatase: phospho-protein complex structure determination, which requires to understand how specificity is achieved at the protein level remains a significant challenge for protein crystallography and cryoEM due to the transient nature of binding interactions. Using rPTPεD1 and phospho-SrcKD as a model system, we established an integrative workflow involving protein crystallography, SAXS and pTyr-tailored MD simulations to reveal the complex formed between rPTPεD1 and phospho-SrcKD, revealing transient protein–protein interactions distal to the active site. To support our finding, we determined the associate rate between rPTPεD1 and phospho-SrcKD and showed that a single mutation on rPTPεD1 disrupts this transient interaction, resulting in the reduction of association rate and activity. Our simulations suggest that rPTPεD1 employs a binding mechanism involving conformational change prior to the engagement of cSrcKD. This integrative approach is applicable to other PTP: phospho-protein complex determination and is a general approach for elucidating transient protein surface interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.