The mechanisms of noncoherent photon upconversion that involve triplet-triplet annihilation (TTA) in solution have been investigated for two model systems. ZnTPP (meso-tetraphenylporphine zinc) is used as the model visible light-absorbing metalloporphyrin because its S(1) fluorescence intensity can be used to monitor the initial rate of porphyrin triplet state production and because its S(2) fluorescence intensity can be used as a direct measure of the rate of porphyrin TTA. When perylene, which has a triplet energy lower than that of ZnTPP, is added as a signaling blue emitter (BE), the mechanism of photon upconversion involves triplet energy transfer from the porphyrin to the BE followed by TTA in the BE to form the fluorescent perylene S(1) state. The kinetics of this process have been characterized and are unremarkable. When coumarin 343 (C343), which has photophysical properties similar to those of perylene except that it has a much higher triplet energy than ZnTPP, is added as the signaling BE, emission from the ZnTPP S(2) state is quenched and fluorescence from the C343 grows in. Contrary to previous suggestions, the mechanism of photon upconversion in this system does not involve singlet energy transfer from the porphyrin S(2) state to the BE. Instead, ground-state C343 complexes with the ZnTPP triplet to form a triplet exciplex, which then undergoes TTA with a second ZnTPP triplet to give the fluorescent state of the BE in a three-center process.
The spectroscopy and dynamic behavior of the self-assembled, Soret-excited zinc tetraphenylporphyrin (ZnTPP) plus fullerene (C(60)) model system in solution has been examined using steady state fluorescence quenching, nanosecond time-correlated single photon counting, picosecond fluorescence upconversion, and picosecond transient absorption methods. Evidence of ground state complexation is presented. Steady-state quenching of the S(2) and S(1) fluorescence of ZnTPP by C(60) reveals that the quenching processes only occur in the excited complexes, are ultrafast, and proceed at different rates in the two states. Only uncomplexed ZnTPP is observed by fluorescence lifetime methods; the locally excited complexes are either dark or, more likely, rapidly relax to products that do not radiate strongly. Both short-range (Dexter) energy transfer and electron transfer relaxation mechanisms are evaluated. Picosecond transient absorption data obtained from the subtle differences between the spectra of Soret-excited ZnTPP with and without a large excess of added C(60) reveal the formation, on a subpicosecond time scale, of relatively long-lived charge-separated species. Soret excitation of ZnTPP···C(60) does not produce a quantitative yield of species in the lower S(1) excited state.
As part of a continuing effort to find noncoherent photon upconversion (NCPU) systems with improved energy conversion efficiencies, the photophysics of the blue emitter, anthanthrene (An), and the fullerene absorber-sensitizer, C60, have been examined by both steady-state and pulsed laser techniques. An is a promising candidate for NCPU by homomolecular triplet-triplet annihilation (TTA) because its triplet state lies ∼800 cm(-1) below the triplet energy of the C60 donor (thereby improving efficiency by reducing back triplet energy transfer), and its fluorescent singlet state lies in near resonance with double its triplet energy (thus minimizing thermal energy losses in the annihilation process). In fluid solution, efficient triplet-triplet donor-acceptor energy transfer is observed, and rate constants for homomolecular TTA in the An acceptor are estimated to approach the diffusion limit. NCPU is also observed in An + C60 in poly(methylmethacrylate) thin films.
In this perspective article, we discuss the possibilities of integrating liquefied organic and inorganic semiconducting materials with tunable optoelectronic properties into solvent-free fluidic systems of functional optoelectronic materials to generate flexible DSSCs/QDSSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.