Familial multiple endocrine neoplasia type 1 (FMEN1) is an autosomal dominant trait characterized by tumors of the parathyroids, gastro-intestinal endocrine tissue, anterior pituitary and other tissues. We recently cloned the MEN1 gene and confirmed its identity by finding mutations in FMEN1. We have now extended our mutation analysis to 34 more unrelated FMEN1 probands and to two related states, sporadic MEN1 and familial hyperparathyroidism. There was a high prevalence of heterozygous germline MEN1 mutations in sporadic MEN1 (8/11 cases) and in FMEN1 (47/50 probands). One case of sporadic MEN1 was proven to be a new MEN1 mutation. Eight different mutations were observed more than once in FMEN1. Forty different mutations (32 FMEN1 and eight sporadic MEN1) were distributed across the MEN1 gene. Most predicted loss of function of the encoded menin protein, supporting the prediction that MEN1 is a tumor suppressor gene. No MEN1 germline mutation was found in five probands with familial hyperparathyroidism, suggesting that familial hyperparathyroidism often is caused by mutation in another gene or gene(s).
Multiple endocrine neoplasia type I (MEN1) is a familial cancer syndrome characterized primarily by tumors of multiple endocrine glands. The gene for MEN1 encodes a ubiquitously expressed tumor suppressor protein called menin. Menin was recently shown to interact with several components of a trithorax family histone methyltransferase complex including ASH2, Rbbp5, WDR5, and the leukemia proto-oncoprotein MLL. To elucidate menin's role as a tumor suppressor and gain insights into the endocrine-specific tumor phenotype in MEN1, we mapped the genomic binding sites of menin, MLL1, and Rbbp5, to approximately 20,000 promoters in HeLa S3, HepG2, and pancreatic islet cells using the strategy of chromatin-immunoprecipitation coupled with microarray analysis. We found that menin, MLL1, and Rbbp5 localize to the promoters of thousands of human genes but do not always bind together. These data suggest that menin functions as a general regulator of transcription. We also found that factor occupancy generally correlates with high gene expression but that the loss of menin does not result in significant changes in most transcript levels. One exception is the developmentally programmed transcription factor, HLXB9, which is overexpressed in islets in the absence of menin. Our findings expand the realm of menin-targeted genes several hundred-fold beyond that previously described and provide potential insights to the endocrine tumor bias observed in MEN1 patients.
Multiple endocrine neoplasia type 1 (MEN 1) is an inherited cancer syndrome in which affected individuals develop multiple parathyroid, enteropancreatic, and pituitary tumors. The locus for MEN1 is tightly linked to the marker PYGM on chromosome 11q13, and linkage analysis places the MEN1 gene within a 2-Mb interval flanked by the markers D11S1883 and D11S449. Loss of heterozygosity studies in MEN 1 and sporadic tumors suggest that theMEN1 gene encodes a tumor suppressor and have helped to narrow the location of the gene to a 600-kb interval between PYGM andD11S449. Focusing on this smaller MEN1 interval, we have identified and mapped 12 transcripts to this 600-kb region. A precise ordered map of 33 transcripts, including 12 genes known to map to this region, was generated for the 2.8-Mb D11S480–D11S913interval. Fifteen candidate genes (of which 10 were examined exhaustively) were evaluated by Southern blot and/or dideoxy fingerprinting analysis to identify the gene harboring disease-causing mutations.[The sequence data described in this paper have been submitted to GenBank under accession nos. EST06996, U93236,AF001540–AF001547, AF001433–AF001436, AF001891–AF001893,N55476, R19205, and W37647 (see Table 1 for listing of transcripts). The BAC clone sequences have been submitted to GenBank under accession nos. AC000134, AC000159, and AC000353.]
Phacoemulsification with in-the-bag PC IOL and CTR implantation in eyes with zonular dialysis of up to approximately 150 degrees had a success rate of 90.47%. Visual recovery was not as good as in normal eyes because of the problems associated with zonular dialysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.