Long noncoding RNAs (lncRNAs) are emerging as key molecules in regulating many biological processes and have been implicated in development and disease pathogenesis. Biomarkers of cancer and normal tissue response to treatment are of great interest in precision medicine, as well as in public health and medical management, such as for assessment of radiation injury after an accidental or intentional exposure. Circulating and functional RNAs, including microRNAs (miRNAs) and lncRNAs, in whole blood and other body fluids are potential valuable candidates as biomarkers. Early prediction of possible acute, intermediate and delayed effects of radiation exposure enables timely therapeutic interventions. To address whether long noncoding RNAs (lncRNAs) could serve as biomarkers for radiation biodosimetry we performed whole genome transcriptome analysis in a mouse model after whole-body irradiation. Differential lncRNA expression patterns were evaluated at 16, 24 and 48 h postirradiation in total RNA isolated from whole blood of mice exposed to 1, 2, 4, 8 and 12 Gy of X rays. Sham-irradiated animals served as controls. Significant alterations in the expression patterns of lncRNAs were observed after different radiation doses at the various time points. We identified several radiation-induced lncRNAs known for DNA damage response as well as immune response. Long noncoding RNA targets of tumor protein 53 (P53), Trp53cor1, Dino, Pvt1 and Tug1 and an upstream regulator of p53, Meg3, were altered in response to radiation. Gm14005 ( Morrbid) and Tmevpg1 were regulated by radiation across all time points and doses. These two lncRNAs have important potential as blood-based radiation biomarkers; Gm14005 ( Morrbid) has recently been shown to play a key role in inflammatory response, while Tmevpg1 has been implicated in the regulation of interferon gamma. Precise molecular biomarkers, likely involving a diverse group of inducible molecules, will not only enable the development and effective use of medical countermeasures but may also be used to detect and circumvent or mitigate normal tissue injury in cancer radiotherapy.
Whole blood-based miRNA expression signatures might be used for predicting radiation exposures in a mass casualty nuclear incident.
◥Radiotherapy is highly effective due to its ability to physically focus the treatment to target the tumor while sparing normal tissue and its ability to be combined with systemic therapy. This systemic therapy can be utilized before radiotherapy as an adjuvant or induction treatment, during radiotherapy as a radiation "sensitizer," or following radiotherapy as a part of combined modality therapy. As part of a unique concept of using radiation as "focused biology," we investigated how tumors and normal tissues adapt to clinically relevant multifraction (MF) and single-dose (SD) radiation to observe whether the adaptations can induce susceptibility to cell killing by available drugs or by immune enhancement. We identified an adaptation occurring after MF (3  2 Gy) that induced cell killing when AKT-mTOR inhibitors were delivered following cessation of radiotherapy. In addition, we identified inducible changes in integrin expression 2 months following cessation of radiotherapy that differ between MF (1 Gy  10) and SD (10 Gy) that remain targetable compared with preradiotherapy. Adaptation is reflected across different "omics" studies, and thus the range of possible molecular targets is not only broad but also time, dose, and schedule dependent. While much remains to be studied about the radiation adaptive response, radiation should be characterized by its molecular perturbations in addition to physical dose. Consideration of the adaptive effects should result in the design of a tailored radiotherapy treatment plan that accounts for specific molecular changes to be targeted as part of precision multimodality cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.