Although Na(+)/H(+) exchanger isoform 3 (NHE3) mediates most Na(+)/H(+) exchange in the proximal tubule, studies of NHE3/NHE2 null mice suggest residual Na(+)-dependent proton secretion (Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, and Baum M. J Clin Invest 105: 1141-1146, 2000). To characterize additional NHE isoforms that might be expressed in the kidney, we identified the partial sequence of a novel NHE. PCR was used to define the 5'- and 3'-ends, and a cDNA encoding the complete open reading frame was amplified from mouse kidney. The predicted protein of 576 amino acids, which we have named NHE8, has 30-35% amino acid identity to known mammalian isoforms (NHE1-7) but has >50% identity to Drosophila melanogaster "NHE1," suggesting it is the mammalian ortholog of this ancient invertebrate isoform. Northern blot of mouse tissues revealed ubiquitous expression. Western blot using anti-NHE8 antibodies demonstrated protein expression in apical membranes purified from rat renal cortex by divalent cation precipitation. In situ hybridization revealed that NHE8 message was present in both cortex and medulla. In the cortex, NHE8 was present in the majority of cortical tubules, consistent with proximal tubule (S1 and S2) localization. In the medulla, NHE8 message was most highly expressed in the proximal tubules (S3) of the outer stripe of the outer medulla. Thus NHE8 is expressed in the proximal tubule, where it may contribute to apical membrane ion transport.
Proximal tubule bicarbonate reabsorption is primarily mediated via the Na+/H+ exchanger, identified as NHE3 in adults. Previous studies have demonstrated a maturational increase in rat proximal tubule NHE3 expression, with a paucity of NHE3 expression in neonates, despite significant Na+-dependent proton secretion. Recently, a novel Na+/H+ antiporter (NHE8) was identified and found to be expressed on the apical membrane of the proximal tubule. To determine whether NHE8 may be the antiporter responsible for proton secretion in neonates, the present study characterized the developmental expression of NHE8 in rat proximal tubules. RNA blots and real-time RT-PCR demonstrated no developmental difference in the mRNA of renal NHE8. Immunoblots, however, demonstrated peak protein abundance of NHE8 in brush border membrane vesicles of 7- and 14-day-old compared with adult rats. In contrast, the level of NHE8 expression in total cortical membrane protein was higher in adults than in neonates. Immunohistochemistry confirmed the presence of NHE8 on the apical membrane of the proximal tubules of neonatal and adult rats. These data demonstrate that NHE8 does undergo maturational changes on the apical membrane of the rat proximal tubule and may account for the Na+-dependent proton flux in neonatal proximal tubules.
In situ hybridization studies demonstrated that Na+/H+ exchanger NHE8 is expressed in kidney proximal tubules. Although membrane fractionation studies suggested apical brush-border localization, precise membrane localization could not be definitively established. The goal of the present study was to develop isoform-specific NHE8 antibodies as a tool to directly establish the localization of NHE8 protein in the kidney by immunocytochemistry. Toward this goal, two sets of antibodies that label different NHE8 epitopes were developed. Monoclonal antibody 7A11 and polyclonal antibody Rab65 both specifically labeled NHE8 by Western blotting as well as by immunofluorescence microscopy. The immunolocalization pattern in the kidney seen with both antibodies was the same, thereby validating NHE8 specificity. In particular, NHE8 expression was observed on the apical brush-border membrane of all proximal tubules from S1 to S3. The most intense staining was evident in proximal tubules in the deeper cortex and medulla with a significant but somewhat weaker staining in superficial proximal tubules. Colocalization studies with gamma-glutamyltranspeptidase and megalin indicated expression of NHE8 on both the microvillar surface membrane and the coated-pit region of proximal tubule cells, suggesting that NHE8 may be subject to endocytic retrieval and recycling. Although colocalizing in the proximal tubule with NHE3, no significant alteration in NHE8 protein expression was evident in NHE3-null mice. We conclude that NHE8 is expressed on the apical brush-border membrane of proximal tubule cells, where it may play a role in mediating or regulating ion transport in this nephron segment.
NHE8 is expressed in the apical membrane of the proximal tubule and is predicted to be a Na+/H+ exchanger on the basis of its primary amino acid sequence. Functional characterization of native NHE8 in mammalian cells has not been possible to date. We screened a number of polarized renal cell lines for the plasma membrane Na+/H+ exchangers (NHE1, 2, 3, 4, and 8) and found only NHE1 and NHE8 transcripts in NRK cells by RT-PCR. NHE8 protein is expressed in the apical membrane of NRK cells as demonstrated by immunoblots, confocal fluorescent immunocytochemistry, and immunoelectron microscopy. NHE1, on the other hand, is expressed primarily in the basolateral membrane. Bilateral perfusion of NRK cells grown on permeable supports shows Na+/H+ exchange activity on both the apical and basolateral membranes. NHE8-specific small interfering RNA knocks down NHE8 protein expression but does not affect NHE1 protein levels. Knockdown of NHE8 protein is accompanied by a commensurate reduction in apical NHE activity, without altered basolateral NHE activity. Conversely, transfection of NHE1-specific small interfering RNA knocks down NHE1 protein expression without affecting NHE8 protein levels and reduces basolateral NHE activity without affecting apical NHE activity. NHE8 is the only apical membrane Na+/H+ exchanger in NRK cells. NHE8 activity is Na+ dependent, displaying a cooperative sigmoidal relationship, and is highly sensitive to 5-(N-ethyl-n-isopropyl)-amiloride (EIPA). NRK cells provide a useful system where NHE8 can be studied in its native environment.
Conversely, parental cells at HG show upregulation of phos-Thr-32 and nuclear export of HA-FOXO3a. To determine whether inhibition of cross talk between WTp66ShcA and FOXO3a confers protection against oxidant-induced DNA damage, DNA strand breaks (DSB) and apoptosis were examined. At HG, p66ShcA-deficient cells exhibit increased resistance to DSB and apoptosis, while parental cells show a striking increase in both parameters. We conclude that knockdown of WTp66ShcA redox function prevents HG-dependent FOXO3a regulation and promotes the survival phenotype.reactive oxygen species; DNA damage; redox function P66SHCA PROTEIN IS ONE of three isoforms encoded by the mammalian ShcA locus. The three overlapping Shc proteins, p66ShcA, p52ShcA, and p46ShcA, all share a COOH-terminal Src homology 2 (SH2) domain, central collagen-homologous
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.