The brain tumor is a cluster of the abnormal tissues, and it is essential to categorize brain tumors for treatment using Magnetic Resonance Imaging (MRI). The segmentation of tumors from brain MRI is understood to be complicated and also crucial tasks. It can be further use in surgery, medical preparation, and assessments. In addition to this, the brain MRI classification is also essential. The enhancement of machine learning and technology will aid radiologists in diagnosing tumors without taking invasive steps. In this paper, the method to detect a brain tumor and classification has been present. Brain tumor detection processes through pre-processing, skull stripping, and tumor segmentation. It is employing a thresholding method followed by morphological operations. The number of training image influences the feature extracted by the CNN, then CNN models overfit after some epoch. Hence, deep learning CNN with transfer learning techniques has evolved. The tumorous brain MRI is classified using CNN based AlexNet architecture. Further, the malignant brain tumor is classified using GooLeNet transfer learning architecture. The performance of this approach is evaluated by precision, recall, F-measure, and accuracy metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.