Along the coastline of Tamil Nadu, five sites were chosen to assess the diversity of Pseudomonas populations isolated from rice (Oryza sativa) cultivated along a salinity gradient. One of these sites was under organic farming while the other four were under inorganic farming. A total of 256 Pseudomonas strains isolated from these five sites were analyzed using both phenotypic (substrate utilization patterns and antibiotic resistance assay) and genotypic (PCR-RFLP of 16S rDNA) characteristics. The results derived from this study indicate that soil salinity affects rhizosphere Pseudomonas populations. It was observed that increasing salinity led to decreasing diversity. Fluorescent pseudomonads were the dominant species found in the non-saline site, while in the saline sites they were replaced by salt-tolerant species, in particular Pseudomonas alcaligenes and P. pseudoalcaligenes. An interesting observation was the increase in diversity found in the saline site under organic farming. Organic farming was found to be capable of mitigating the harmful effects of saline stress to a large extent, and restoring the Pseudomonas diversity, thereby making it comparable with the diversity encountered in the non-saline site.
Aims: To study the diversity of the Pseudomonas populations isolated from three different plant rhizospheres, namely pearl millet, cotton and paddy, grown in saline soils along the coastline of Southern India. Methods and Results: The Pseudomonas populations were analysed for their biochemical characters and genetic diversity using molecular tools including RAPD and PCR-RFLP. The biochemical characterization, antibiotic resistance assay and RAPD pro®les revealed a largely homogenous population. Even in PCR-RFLP restriction studies, only two groups of isolates were seen. One group was predominant in all three rhizospheres, while the other minor group consisted of salt-sensitive isolates restricted to the paddy rhizosphere alone. Conclusions: It was observed that increasing salinity caused a predominant selection of salttolerant species, in particular Ps. pseudoalcaligenes and Ps. alcaligenes, irrespective of the host rhizosphere. Signi®cance and Impact of the Study: This study has reinstated the importance of the soil over the host plant with regard to rhizosphere populations. It has also resulted in the isolation of several salt-tolerant Pseudomonas strains, which are being screened for their biological control activity against common plant pathogens of the coastal agri-ecosystem.
RNase P, a ribonucleoprotein responsible for the 5' maturation of precursor tRNAs (ptRNAs) in all organisms, can be enticed to cleave any target mRNA that forms a ptRNA-like structure and sequence-specific complex when bound to an RNA, termed the EGS (external guide sequence). In the present study, F3H (flavanone 3-hydroxylase), a key enzyme in the flavonoid biosynthetic pathway that participates in the formation of red-coloured anthocyanins, was used as a target for RNase P-mediated gene disruption in maize cells. Transient expression of an EGS complementary to the F3H mRNA resulted in suppression of F3H to 29% of the control, as indicated by a reduced number of anthocyanin-accumulating cells. This decrease was not observed in experiments where a disabled mutant EGS was expressed. Our results demonstrate the potential of employing plant RNase P, in the presence of an appropriate gene-specific EGS, as a tool for targeted degradation of mRNAs.
Rhizobia are used exclusively in agricultural systems for enhancing the ability of legumes to fix atmospheric nitrogen. Knowledge about the indigenous population is necessary for the selection and application of inoculant strains. In this study, we have assessed the genetic diversity of Bradyrhizobium strains isolated from the host plant, Arachis hypogaea along the coastline of Tamil Nadu. Different populations collected from varying environmental conditions were analysed for salt and pH tolerance. Genetic diversity among the strains was studied using RAPD markers and PCR-RFLP of 16S rDNA and nifD genes. The approaches used in this study yielded consistent results, which revealed a high degree of heterogeneity among strains and detection of two distinct genetic groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.