Ketolides represent a new generation of macrolide antibiotics. In order to identify the ketolide-binding site on the ribosome, a library of Escherichia coli clones, transformed with a plasmid carrying randomly mutagenized rRNA operon, was screened for mutants exhibiting resistance to the ketolide HMR3647. Sequencing of the plasmid isolated from one of the resistant clones and fragment exchange demonstrated that a single U754A mutation in hairpin 35 of domain II of the E. coli 23S rRNA was sufficient to confer resistance to low concentrations of the ketolide. The same mutation also conferred erythromycin resistance. Both the ketolide and erythromycin protected A2058 and A2059 in domain V of 23S rRNA from modification with dimethyl sulphate, whereas, in domain II, the ketolide protected, while erythromycin enhanced, modification of A752 in the loop of the hairpin 35. Thus, mutational and footprinting results strongly suggest that the hairpin 35 constitutes part of the macrolide binding site on the ribosome. Strong interaction of ketolides with the hairpin 35 in 23S rRNA may account for the high activity of ketolides against erythromycin-resistant strains containing rRNA methylated at A2058. The existence of macrolide resistance mutations in the central loop of domain V and in hairpin 35 in domain II together with antibiotic footprinting data suggest that these rRNA segments may be in close proximity in the ribosome and that hairpin 35 may be a constituent part of the ribosomal peptidyl transferase centre.
Interactions between tRNA or its analogs and 23S rRNA in the large ribosomal subunit were analyzed by RNA footprinting and by modification-interference selection. In the E site, tRNA protected bases G2112, A2392, and C2394 of 23S rRNA. Truncated tRNA, lacking the anticodon stem-loop, protected A2392 and C2394, but not G2112, and tRNA derivatives with a shortened 39 end protected only G2112, but not A2392 or C2394. Modification interference revealed C2394 as the only accessible nucleotide in 23S rRNA whose modification interferes with binding of tRNA in the large ribosomal subunit E site. The results suggest a direct contact between A76 of tRNA A76 and C2394 of 23S rRNA. Protections at G2112 may reflect interaction of this 23S rRNA region with the tRNA central fold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.