Resource scheduling in a cloud computing environment is noteworthy for scientific workflow execution under a cost-effective deadline constraint. Although various researchers have proposed to resolve this critical issue by applying various meta-heuristic and heuristic approaches, no one is able to meet the strict deadline conditions with load-balanced among machines. This article has proposed an improved genetic algorithm that initializes the population with a greedy strategy. Greedy strategy assigns the task to a virtual machine that is under loaded instead of assigning the tasks randomly to a machine. In general workflow scheduling, task dependency is tested after each crossover and mutation operators of genetic algorithm, but here the authors perform after the mutation operation only which yield better results. The proposed model also considered booting time and performance variation of virtual machines. The authors compared the algorithm with previously developed heuristics and metaheuristics both and found it increases hit rate and load balance. It also reduces execution time and cost.
Complex huge-scale scientific applications are simplified by workflow to execute in the cloud environment. The cloud is an emerging concept that effectively executes workflows, but it has a range of issues that must be addressed for it to progress. Workflow scheduling using a nature-inspired metaheuristic algorithm is a recent central theme in the cloud computing paradigm. It is an NP-complete problem that fascinates researchers to explore the optimum solution using swarm intelligence. This is a wide area where researchers work for a long time to find an optimum solution but due to the lack of actual research direction, their objectives become faint. Our systematic and extensive analysis of scheduling approaches involves recently high-cited metaheuristic algorithms like Genetic Algorithms (GA), Whale Search Algorithm (WSA), Ant Colony Optimization (ACO), Bat Algorithm, Artificial Bee Colony (ABC), Cuckoo Algorithm, Firefly Algorithm and Particle Swarm Optimization (PSO). Based on various parameters, we do not only classify them but also furnish a comprehensive striking comparison among them with the hope that our efforts will assist recent researchers to select an appropriate technique for further undiscovered issues. We also draw the attention of present researchers towards some open issues to dig out unexplored areas like energy consumption, reliability and security for considering them as future research work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.