If a mother's nutritional status predicts the nutritional environment of the offspring, it would be adaptive for mothers experiencing nutritional stress to prime their offspring for a better tolerance to poor nutrition. We report that in Drosophila melanogaster , parents raised on poor larval food laid 3–6% heavier eggs than parents raised on standard food, despite being 30 per cent smaller. Their offspring developed 14 h (4%) faster on the poor food than offspring of well-fed parents. However, they were slightly smaller as adults. Thus, the effects of parental diet on offspring performance under malnutrition apparently involve both adaptive plasticity and maladaptive effects of parental stress.
Hunting live prey is risky and thought to require specialized adaptations. Therefore, observations of predatory cannibalism in otherwise non-carnivorous animals raise questions about its function, adaptive significance and evolutionary potential. Here we document predatory cannibalism on larger conspecifics in Drosophila melanogaster larvae and address its evolutionary significance. We found that under crowded laboratory conditions younger larvae regularly attack and consume 'wandering-stage' conspecifics, forming aggregations mediated by chemical cues from the attacked victim. Nutrition gained this way can be significant: an exclusively cannibalistic diet was sufficient for normal development from eggs to fertile adults. Cannibalistic diet also induced plasticity of larval mouth parts. Finally, during 118 generations of experimental evolution, replicated populations maintained under larval malnutrition evolved enhanced propensity towards cannibalism. These results suggest that, at least under laboratory conditions, predation on conspecifics in Drosophila is a functional, adaptive behaviour, which can rapidly evolve in response to nutritional conditions.
The animal gut plays a central role in tackling two common ecological challenges, nutrient shortage and food-borne parasites, the former by efficient digestion and nutrient absorption, the latter by acting as an immune organ and a barrier. It remains unknown whether these functions can be independently optimised by evolution, or whether they interfere with each other. We report that Drosophila melanogaster populations adapted during 160 generations of experimental evolution to chronic larval malnutrition became more susceptible to intestinal infection with the opportunistic bacterial pathogen Pseudomonas entomophila. However, they do not show suppressed immune response or higher bacterial loads. Rather, their increased susceptibility to P. entomophila is largely mediated by an elevated predisposition to loss of intestinal barrier integrity upon infection. These results may reflect a trade-off between the efficiency of nutrient extraction from poor food and the protective function of the gut, in particular its tolerance to pathogen-induced damage.
Critical size at which metamorphosis is initiated represents an important checkpoint in insect development. Here, we use experimental evolution in Drosophila melanogaster to test the long‐standing hypothesis that larval malnutrition should favour a smaller critical size. We report that six fly populations subject to 112 generations of laboratory natural selection on an extremely poor larval food evolved an 18% smaller critical size (compared to six unselected control populations). Thus, even though critical size is not plastic with respect to nutrition, smaller critical size can evolve as an adaptation to nutritional stress. We also demonstrate that this reduction in critical size (rather than differences in growth rate) mediates a trade‐off in body weight that the selected populations experience on standard food, on which they show a 15–17% smaller adult body weight. This illustrates how developmental mechanisms that control life history may shape constraints and trade‐offs in life history evolution.
Both development and evolution under chronic malnutrition lead to reduced adult size in Drosophila. We studied the contribution of changes in size vs. number of epidermal cells to plastic and evolutionary reduction of wing size in response to poor larval food. We used flies from six populations selected for tolerance to larval malnutrition and from six unselected control populations, raised either under standard conditions or under larval malnutrition. In the control populations, phenotypic plasticity of wing size was mediated by both cell size and cell number. In contrast, evolutionary change in wing size, which was only observed as a correlated response expressed on standard food, was mediated entirely by reduction in cell number. Plasticity of cell number had been lost in the selected populations, and cell number did not differ between the sexes despite males having smaller wings. Results of this and other experimental evolution studies are consistent with the hypothesis that alleles which increase body size through prolonged growth affect wing size mostly via cell number, whereas alleles which increase size through higher growth rate do so via cell size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.