A new hybrid-particle-in-cell (PIC)-Monte Carlo Collision (h-PIC-MCC) algorithm is presented here. The code correctly simulates the damping of ion acoustic wave due to dust charge fluctuation in a dusty plasma along with other kinetic effects such as Landau damping. In the model, on event of a collision between a charged particle and a dust particle, a randomised probability determines whether the charged particle is absorbed by the dust with the collision cross section being determined dynamically by the overall interaction scenario. We find that this method is versatile enough as it can also include the size and mass distribution for the dust particles, in addition to the charged species dynamics. As such, it can be adopted to study numerous phenomena that occur in diverse dusty plasma environments. We believe that the damping of the ion acoustic wave through dust charge fluctuation is being demonstrated, for the first time, with a PIC code, in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.