As environmental problems worsen, eco-innovation research has received increased attention. Korea is implementing an eco-label policy to induce eco-innovation. Eco-labeling is a type of voluntary eco-innovation. There are few empirical studies on the economic performance of eco-labels in Korea and even fewer on the additional investment in the technology used for eco-labeling. The present study quantitatively measured the effect of eco-labels on additionally generated sales and research and development (R&D) investment through propensity score matching. The results revealed that eco-labeling has a positive impact on sales over the following 2 years, which is the expiration date of certification; moreover, investment in R&D typically increased for 3 years before certification. Interestingly, no additional R&D investment was made after certification. This study is mainly a basis for the introduction of environmental certification to government policymakers or product strategists who have yet to implement a certification system.
Backgrounds
Recent large-scale genetic studies often involve clustered phenotypes such as repeated measurements. Compared to a series of univariate analyses of single phenotypes, an analysis of clustered phenotypes can be useful for substantially increasing statistical power to detect more genetic associations. Moreover, for the analysis of rare variants, incorporation of biological information can boost weak effects of the rare variants.
Results
Through simulation studies, we showed that the proposed method outperforms other method currently available for pathway-level analysis of clustered phenotypes. Moreover, a real data analysis using a large-scale whole exome sequencing dataset of 995 samples with metabolic syndrome-related phenotypes successfully identified the glyoxylate and dicarboxylate metabolism pathway that could not be identified by the univariate analyses of single phenotypes and other existing method.
Conclusion
In this paper, we introduced a novel pathway-level association test by combining hierarchical structured components analysis and penalized generalized estimating equations. The proposed method analyzes all pathways in a single unified model while considering their correlations. C/C++ implementation of PHARAOH-GEE is publicly available at
http://statgen.snu.ac.kr/software/pharaoh-gee/
.
Multiple correspondence analysis (MCA) is a useful tool for investigating the interrelationships among dummy-coded categorical variables. MCA has been combined with clustering methods to examine whether there exist heterogeneous subclusters of a population, which exhibit cluster-level heterogeneity. These combined approaches aim to classify either observations only (one-way clustering of MCA) or both observations and variable categories (two-way clustering of MCA). The latter approach is favored because its solutions are easier to interpret by providing explicitly which subgroup of observations is associated with which subset of variable categories. Nonetheless, the two-way approach has been built on hard classification that assumes observations and/or variable categories to belong to only one cluster. To relax this assumption, we propose two-way fuzzy clustering of MCA. Specifically, we combine MCA with fuzzy k-means simultaneously to classify a subgroup of observations and a subset of variable categories into a common cluster, while allowing both observations and variable categories to belong partially to multiple clusters. Importantly, we adopt regularized fuzzy k-means, thereby enabling us to decide the degree of fuzziness in cluster memberships automatically. We evaluate the performance of the proposed approach through the analysis of simulated and real data, in comparison with existing two-way clustering approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.