Purpose The primary purpose of this study was to develop a new machine learning model for the surgery/non-surgery decision in class III patients and evaluate the validity and reliability of this model. Methods The sample consisted of 196 skeletal class III patients. All the cases were allocated randomly, 136 to the training set and the remaining 60 to the test set. Using the test set, the success rate of the artificial neural network model was estimated, along with a 95% confidence interval. To predict surgical cases, we trained a binary classifier using two different methods: random forest (RF) and logistic regression (LR). Results Both the RF and the LR model showed high separability when classifying each patient for surgical or non-surgical treatment. RF achieved an area under the curve (AUC) of 0.9395 on the test set. 95% confidence intervals were computed by bootstrap sampling as lower bound = 0.7908 and higher bound = 0.9799. On the other hand, LR achieved an AUC of 0.937 on the test set. 95% confidence intervals were computed by bootstrap sampling as lower bound = 0.8467 and higher bound = 0.9812. Conclusions RF and LR machine learning models can be used to generate accurate and reliable algorithms to successfully classify patients up to 90%. The features selected by the algorithms coincide with the clinical features that we as clinicians weigh heavily when determining a treatment plan. This study further supports that overjet, Wits appraisal, lower incisor angulation, and Holdaway H angle can be used as strong predictors in assessing a patient’s surgical needs.
In the field of orthodontics, providing patients with accurate treatment time estimates is of utmost importance. As orthodontic practices continue to evolve and embrace new advancements, incorporating machine learning (ML) methods becomes increasingly valuable in improving orthodontic diagnosis and treatment planning. This study aimed to develop a novel ML model capable of predicting the orthodontic treatment duration based on essential pre-treatment variables. Patients who completed comprehensive orthodontic treatment at the Indiana University School of Dentistry were included in this retrospective study. Fifty-seven pre-treatment variables were collected and used to train and test 9 different ML models. The performance of each model was assessed using descriptive statistics, intraclass correlation coefficients, and one-way analysis of variance tests. Random Forest, Lasso, and Elastic Net were found to be the most accurate, with a mean absolute error of 7.27 months in predicting treatment duration. Extraction decision, COVID, intermaxillary relationship, lower incisor position, and additional appliances were identified as important predictors of treatment duration. Overall, this study demonstrates the potential of ML in predicting orthodontic treatment duration using pre-treatment variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.