The tooth enamel microstructure of all the dinosaur taxa that are adequately represented in the American Museum of Natural History collections were analyzed using scanning electron microscopy. This study aims to determine whether or not better sampling within a major nonmammalian amniote (hereafter referred to descriptively as "reptile") clade will unearth phylogenetic patterns in enamel microstructure in addition to those dictated by tooth function. While interest in reptile enamel microstructure has increased in the past few years, intensive sampling focused on just one monophyletic reptile clade was not previously implemented. This study reveals that phylogenetic constraints play a larger role in shaping enamel microstructure in reptiles than previously thought. Within many monophyletic dinosaur clades the combination of enamel types and enamel features within a tooth-the schmelzmuster-is the same in all the taxa due to their common ancestry, and their schmelzmusters are diagnostic of their respective clades. While distantly related taxa with similar teeth and diets have similar schmelzmusters due to functional constraints, phylogenetic constraints keep those schmelzmusters distinct from one another. An interesting finding of this analysis is that the enamel complexity of a taxon does not necessarily coincide with the position of the taxon on a phylogenetic tree; more derived taxa do not necessarily have more derived enamel and more primitive taxa do not necessarily have more primitive enamel.
SYNOPSIS A new, large compsognathid theropod, Huaxiagnathus orientalis gen. et sp. nov., from the Early Cretaceous Yixian Formation deposits of Liaoning Province, People's Republic of China is described. The holotype specimen is nearly complete, lacking only the distal portion of the tail. It is the second largest theropod taxon discovered from Jehol Group sediments. Like all compsognathids, Huaxiagnathus has short forelimbs and a relatively unspecialised coelurosaur body plan. Previously, fairly complete skeletons existed for only two small-bodied taxa of compsognathids, Compsognathus longipes from the Late Jurassic of Western Europe and Sinosauropteryx prima, also from the Yixian. The phylogenetic position of Huaxiagnathus orientalis was analysed using an extensive matrix of theropod characters from many taxa. Huaxiagnathus orientalis fell out at the base of the Compsognathidae, as it lacks the forelimb adaptations of more derived compsognathids. The addition of Huaxiagnathus and the two other compsognathid species to our data matrix resulted in the placement of Compsognathidae near the base of Maniraptora. Furthermore, Alvarezsauridae, Paraves, and a monophyletic Therizinosauroidea + Oviraptorosauria clade fall out in an unresolved trichotomy in the strict consensus of our most parsimonious trees.
A new theropod dinosaur, Shanag ashile, from the Early Cretaceous O ¨ o ¨ sh deposits of Mongolia is described here. The new specimen (IGM 100/1119) comprises a well-preserved right maxilla, dentary, and partial splenial. This specimen exhibits a number of derived theropod features, including a triangular anteriorly tapering maxilla, a large antorbital fossa, and maxillary participation in the caudally elongate external nares. These features resemble the Early Cretaceous dromaeosaurids Sinornithosaurus millenii and Microraptor zhaoianus, as well as the basal avialan Archaeopteryx lithographica. A comprehensive phylogenetic analysis including 58 theropod taxa unambiguously depicts the new O ¨ o ¨ sh theropod as a member of Dromaeosauridae. Relative to other dromaeosaurids, Shanag ashile is autapomorphic in its lack of a promaxillary fenestra and in the presence of interalveolar pneumatic cavities. The discovery of IGM 100/1119 expands our knowledge of Early Cretaceous dromaeosaurids and the faunal similarity between the O ¨ o ¨ sh and the Jehol biotas.
The evolution of tooth enamel microstructure in both extinct and extant mammalian groups has been extensively documented, but is poorly known in reptiles, including dinosaurs. Previous intensive sampling of dinosaur tooth enamel microstructure revealed that: (1) the three-dimensional arrangement of enamel types and features within a tooth-the schmelzmuster-is most useful in diagnosing dinosaur clades at or around the family level; (2) enamel microstructure complexity is correlated with tooth morphology complexity and not necessarily with phylogenetic position; and (3) there is a large amount of homoplasy within Theropoda but much less within Ornithischia. In this study, the examination of the enamel microstructure of 28 additional dinosaur taxa fills in taxonomic gaps of previous studies and reinforces the aforementioned conclusions. Additionally, these new specimens reveal that within clades such as Sauropodomorpha, Neotheropoda, and Euornithopoda, the more basal taxa have simpler enamel that is a precursor to the more complex enamel of more derived taxa and that schmelzmusters evolve in a stepwise fashion. In the particularly well-sampled clade of Euornithopoda, correlations between the evolution of dental and enamel characters could be drawn. The ancestral schmelzmuster for Genasauria remains ambiguous due to the dearth of basal ornithischian teeth available for study. These new specimens provide new insights into the evolution of tooth enamel microstructure in dinosaurs, emphasizing the importance of thorough sampling within broadly inclusive clades, especially among their more basal members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.