The regenerative capacity of skeletal muscle declines with age. Previous studies suggest that this process can be reversed by exposure to young circulation, but systemic age-specific factors responsible for this phenomenon are largely unknown. Here we report that oxytocin- a hormone best known for its role in lactation, parturition, and social behaviors - is required for proper muscle tissue regeneration and homeostasis, and that plasma levels of oxytocin decline with age. Inhibition of oxytocin signaling in young animals reduces muscle regeneration, whereas systemic administration of oxytocin rapidly improves muscle regeneration by enhancing aged muscle stem cell activation/proliferation throughactivation of the MAPK/ERK signalling pathway. We further show that the genetic lack of oxytocin does not cause a developmental defect in muscle, but instead leads to premature sarcopenia. Considering that oxytocin is an FDA approved drug, this work reveals a potential novel and safe way to combat or prevent skeletal muscle aging.
A majority of patients used at least one cost-coping strategy during their treatment, highlighting the financial stress that patients experience. Perceived social isolation is an important social determinant of increased medication nonadherence, missed appointments, and use of cost-coping strategies. Interventions should be investigated in at-risk patients who may suffer from financial stress.
The performance of adult stem cells is crucial for tissue homeostasis but their regenerative capacity declines with age, leading to failure of multiple organs. In skeletal muscle this failure is manifested by the loss of functional tissue, the accumulation of fibrosis, and reduced satellite cell-mediated myogenesis in response to injury. While recent studies have shown that changes in the composition of the satellite cell niche are at least in part responsible for the impaired function observed with aging, little is known about the effects of aging on the intrinsic properties of satellite cells. For instance, their ability to repair DNA damage and the effects of a potential accumulation of DNA double strand breaks (DSBs) on their regenerative performance remain unclear. This work demonstrates that old muscle stem cells display no significant accumulation of DNA DSBs when compared to those of young, as assayed after cell isolation and in tissue sections, either in uninjured muscle or at multiple time points after injury. Additionally, there is no significant difference in the expression of DNA DSB repair proteins or globally assayed DNA damage response genes, suggesting that not only DNA DSBs, but also other types of DNA damage, do not significantly mark aged muscle stem cells. Satellite cells from DNA DSB-repair-deficient SCID mice do have an unsurprisingly higher level of innate DNA DSBs and a weakened recovery from gamma-radiation-induced DNA damage. Interestingly, they are as myogenic in vitro and in vivo as satellite cells from young wild type mice, suggesting that the inefficiency in DNA DSB repair does not directly correlate with the ability to regenerate muscle after injury. Overall, our findings suggest that a DNA DSB-repair deficiency is unlikely to be a key factor in the decline in muscle regeneration observed upon aging.
Damage to bearing surfaces of total joint replacements (TJR) can have clinical consequences: wear debris generated from ultra-high molecular weight polyethylene (UHMWPE) surfaces can cause osteolysis and subsequent implant loosening [1]. Counterbearing metallic damage may significantly increase UHMWPE wear [2]. Documenting the morphology, frequency and location of bearing surface damage may provide insight into wear initiation and prevention. While scoring methodologies have been available and validated for total hip replacements (THR) and total knee replacements (TKR) [3–4], there is a paucity of validated scoring protocols for total shoulder replacements (TSR) [5]. Our previous work presented a damage scoring methodology to evaluate the severity and coverage of six damage modes on retrieved cobalt chrome (CoCr) humeral heads [6]. In this study, we adapt that protocol to include bearing surface damage on the counter-bearings (UHMWPE glenoid components). Additionally, we incorporate the results of 3D profilometry analysis of scratches in the Co-Cr humeral heads [6]. Ultimately, this macroscale and microscale analysis, combined with clinical data, for coupled TSR retrievals will provide insight on the origin, evolution and consequences of bearing damage in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.