The human 5-HT(6) receptor (5-HT(6)R) is one of the latest cloned receptors among the known 5-HT receptors. Its abundant distribution in the limbic region, which participates in the control of mood and emotion and is involved in nervous system diseases such as depression and Alzheimer disease, has caused it to generate much interest. However, the cellular mechanisms of 5-HT(6)R are poorly understood. In the present study we found, using a yeast two-hybrid assay, that the carboxyl-terminal region of 5-HT(6)R interacts with the Fyn-tyrosine kinase. We also determined using a glutathione S-transferase pulldown assay that this interaction was mediated through the SH3 domain of Fyn and confirmed this by co-immunoprecipitation assays in two different transfected cell lines as well as in adult rat brains. Immunocyto(histo)chemistry also showed prominent co-localization between 5-HT(6)R and Fyn in transfected cells and a similar distribution between 5-HT(6)R and Fyn in the rat brain. Based on this interaction, we further examined the modulation of 5-HT(6)R by Fyn and vice versa. In addition, we demonstrated that the activation of 5-HT(6)R activated the extracellular signal-regulated kinase1/2 via an Fyn-dependent pathway. These findings suggest that Fyn may play an important role in 5-HT(6)R- mediated signaling pathways in the central nervous system.
A series of small compounds acting at the orphan G proteincoupled receptor GPR92 were screened using a signaling pathway-specific reporter assay system. Lipid-derived molecules including farnesyl pyrophosphate (FPP), N-arachidonylglycine (NAG), and lysophosphatidic acid were found to activate GPR92. FPP and lysophosphatidic acid were able to activate both G q/11 -and G s -mediated signaling pathways, whereas NAG activated only the G q/11 -mediated signaling pathway. Computer-simulated modeling combined with site-directed mutagenesis of GPR92 indicated that Thr 97 , Gly 98 , Phe 101 , and Arg 267 of GPR92 are responsible for the interaction of GPR92 with FPP and NAG. Reverse transcription-PCR analysis revealed that GPR92 mRNA is highly expressed in the dorsal root ganglia (DRG) but faint in other brain regions. Peripheral tissues including, spleen, stomach, small intestine, and kidney also expressed GPR92 mRNA. Immunohistochemical analysis revealed that GPR92 is largely co-localized with TRPV1, a nonspecific cation channel that responds to noxious heat, in mouse and human DRG. FPP and NAG increased intracellular Ca 2؉ levels in cultured DRG neurons. These results suggest that FPP and NAG play a role in the sensory nervous system through activation of GPR92.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.