Traditional techniques for emotion recognition have focused on the facial expression analysis only, thus providing limited ability to encode context that comprehensively represents the emotional responses. We present deep networks for context-aware emotion recognition, called CAER-Net, that exploit not only human facial expression but also context information in a joint and boosting manner. The key idea is to hide human faces in a visual scene and seek other contexts based on an attention mechanism. Our networks consist of two sub-networks, including two-stream encoding networks to separately extract the features of face and context regions, and adaptive fusion networks to fuse such features in an adaptive fashion. We also introduce a novel benchmark for context-aware emotion recognition, called CAER, that is more appropriate than existing benchmarks both qualitatively and quantitatively. On several benchmarks, CAER-Net proves the effect of context for emotion recognition. Our dataset is available at
We present semantic attribute matching networks (SAM-Net) for jointly establishing correspondences and transferring attributes across semantically similar images, which intelligently weaves the advantages of the two tasks while overcoming their limitations. SAM-Net accomplishes this through an iterative process of establishing reliable correspondences by reducing the attribute discrepancy between the images and synthesizing attribute transferred images using the learned correspondences. To learn the networks using weak supervisions in the form of image pairs, we present a semantic attribute matching loss based on the matching similarity between an attribute transferred source feature and a warped target feature. With SAM-Net, the state-ofthe-art performance is attained on several benchmarks for semantic matching and attribute transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.