A full understanding of ion transport in porous carbon electrodes is essential for achieving effective energy storage in their applications as electrochemical supercapacitors. It is generally accepted that pores in the size range below 0.5 nm are inaccessible to electrolyte ions and lower the capacitance of carbon materials. Here, nitrogen-doped carbon with ultra-micropores smaller than 0.4 nm with a narrow size distribution, which represents the first example of electrode materials made entirely from ultra-microporous carbon, is prepared. An in situ electrochemical quartz crystal microbalance technique to study the effects of the ultra-micropores on charge storage in supercapacitors is used. It is found that ultra-micropores smaller than 0.4 nm are accessible to small electrolyte ions, and the area capacitance of obtained sample reaches the ultrahigh value of 330 µF cm , significantly higher than that of previously reported carbon-based materials. The findings provide a better understanding of the correlation between ultra-micropore structure and capacitance and open new avenues for design and development of carbon materials for the next generation of high energy density supercapacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.