Background: Functional outcomes after acute ischemic stroke are of great concern to patients and their families, as well as physicians and surgeons who make the clinical decisions. We developed machine learning (ML)-based functional outcome prediction models in acute ischemic stroke. Methods: This retrospective study used a prospective cohort database. A total of 1066 patients with acute ischemic stroke between January 2019 and March 2021 were included. Variables such as demographic factors, stroke-related factors, laboratory findings, and comorbidities were utilized at the time of admission. Five ML algorithms were applied to predict a favorable functional outcome (modified Rankin Scale 0 or 1) at 3 months after stroke onset. Results: Regularized logistic regression showed the best performance with an area under the receiver operating characteristic curve (AUC) of 0.86. Support vector machines represented the second-highest AUC of 0.85 with the highest F1-score of 0.86, and finally, all ML models applied achieved an AUC > 0.8. The National Institute of Health Stroke Scale at admission and age were consistently the top two important variables for generalized logistic regression, random forest, and extreme gradient boosting models. Conclusions: ML-based functional outcome prediction models for acute ischemic stroke were validated and proven to be readily applicable and useful.
Background: Intraoperative neurophysiological monitoring (IONM) has been widely applied in brain vascular surgeries to reduce postoperative neurologic deficit (PND). This study aimed to investigate the effect of IONM during clipping of unruptured intracranial aneurysms (UIAs).Methods: Between January 2013 and August 2020, we enrolled 193 patients with 202 UIAs in the N group (clipping without IONM) and 319 patients with 343 UIAs in the M group (clipping with IONM). Patients in the M group were intraoperatively monitored for motor evoked potentials (MEPs) and somatosensory evoked potentials (SSEPs). Irreversible evoked potential (EP) change was defined as EP deterioration that did not recover until surgery completion. Sustained PND was defined as neurological symptoms lasting for more than one postoperative month.Results: Ten (3.1%) and 13 (6.7%) in the M and N groups, respectively, presented with PND. Compared with the N group, the M group had significantly lower occurrence rates of sustained PND [odds ratio (OR) = 0.36, 95% confidence interval (CI) = 0.13–0.98, p = 0.04], ischemic complications (OR = 0.39, 95% CI = 0.15–0.98, p = 0.04), and radiologic complications (OR = 0.40, 95% CI = 0.19–0.82, p = 0.01). Temporary clipping was an independent risk factor for ischemic complications (ICs) in the total patient group (OR = 6.18, 95% CI = 1.75–21.83, p = 0.005), but not in the M group (OR = 5.53, 95% CI = 0.76–41.92, p = 0.09). Regarding PND prediction, considering any EP changes (MEP and/or SSEP) showed the best diagnostic efficiency with a sensitivity of 0.900, specificity of 0.940, positive predictive value of 0.321, negative predictive value (NPV) of 0.997, and a negative likelihood ratio (LR) of 0.11.Conclusion: IONM application during UIA clipping can reduce PND and radiological complications. The diagnostic effectiveness of IONM, specifically the NPV and LR negative values, was optimal upon consideration of changes in any EP modality.
Background: We investigated evoked potential (EP) changes during superficial temporal artery to middle cerebral artery (STA-MCA) bypass surgery and their correlations with imaging and clinical findings postoperatively. Methods: This retrospective study included patients who underwent STA-MCA bypass surgery due to ischemic stroke with large artery occlusion (MB group). Patients who underwent unruptured MCA aneurysm clipping were enrolled in the control group (MC group). Median and tibial somatosensory evoked potentials (SSEP), and motor evoked potentials recorded from the abductor pollicis brevis (APB-MEP) and abductor hallucis (AH-MEP) were measured intraoperatively. Modified Rankin scale (mRS) and perfusion-weighted imaging (PWI) related variables, i.e., mean transit time (MTT) and time to peak (TTP), were assessed. Results: Δmedian SSEP, ΔAPB-MEP, and ΔAH-MEP were significantly higher in the MB group than in the MC group (p = 0.027, p = 0.006, and p = 0.015, respectively). APB-MEP and AH-MEP amplitudes were significantly increased at the final measurement (p = 0.010 and p < 0.001, respectively). The ΔTTP asymmetry index was moderately correlated with ΔAPB-MEP (r = 0.573, p = 0.005) and ΔAH-MEP (r = 0.617, p = 0.002). ΔAPB-MEP was moderately correlated with ΔMTT (r = 0.429, p = 0.047) and ΔmRS at 1 month (r = 0.514, p = 0.015). Conclusions: MEP improvement during STA-MCA bypass surgery was partially correlated with PWI and mRS and could reflect the recovery in cerebral perfusion.
To investigate patients presenting non-lesional side evoked potential (EP) deterioration without lesional side EP change during unruptured intracranial aneurysm (UIA) clipping surgery. This single-center, retrospective study included patients who underwent single UIA clipping with intraoperative neuromonitoring between March 2017 and December 2021. For targeting lateralized surgery group, we included the UIAs located in middle cerebral artery bifurcation, middle cerebral artery, anterior choroidal artery, and internal carotid artery. Motor evoked potentials (MEPs) and somatosensory evoked potentials (SSEPs) were measured during surgery. Postoperative neurologic deficits (PNDs) were defined using the modified Rankin Scale. A total of 315 patients were enrolled. Twenty-seven patients (8.6%) presented with deterioration of one or more EPs. Nine patients showed non-lesional side EP deterioration first without lesional side EP change. Five patients showed only non-lesional side EP deterioration and did not present PNDs or radiologic complications. Three patients showed non-lesional side EP deterioration followed by bilateral EP warnings, one of which had PND due to postoperative subarachnoid hemorrhage. The other two patients had no PND but showed postoperative cerebral vasospasm. This study provides a basis for decisions regarding the firstly appeared non-lesional side EP deterioration without lesional side EP change during unilateral UIA clipping. Further studies with larger sample sizes are needed to generalize these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.