Identifying the health benefits of phytochemicals is an essential step in drug and functional food development. While many in vitro screening methods have been developed to identify the health effects of phytochemicals, there is still room for improvement because of high cost and low productivity. Therefore, researchers have alternatively proposed in silico methods, primarily based on three types of approaches; utilizing molecular, chemical or ethnopharmacological information. Although each approach has its own strength in analyzing the characteristics of phytochemicals, previous studies have not considered them all together. Here, we apply an integrated in silico analysis to identify the potential health benefits of phytochemicals based on molecular analysis and chemical properties as well as ethnopharmacological evidence. From the molecular analysis, we found an average of 415.6 health effects for 591 phytochemicals. We further investigated ethnopharmacological evidence of phytochemicals and found that on average 129.1 (31%) of the predicted health effects had ethnopharmacological evidence. Lastly, we investigated chemical properties to confirm whether they are orally bio-available, drug available or effective on certain tissues. The evaluation results indicate that the health effects can be predicted more accurately by cooperatively considering the molecular analysis, chemical properties and ethnopharmacological evidence.
BackgroundVerifying the proteins that are targeted by compounds of natural herbs will be helpful to select natural herb-based drug candidates. However, this entails a great deal of effort to clarify the interaction throughout in vitro or in vivo experiments. In this light, in silico prediction of the interactions between compounds and target proteins can help ease the efforts.ResultsIn this study, we performed in silico predictions of herbal compound target identification. First, data related to compounds, target proteins, and interactions between them are taken from the DrugBank database. Then we characterized six classes of compound-target interaction in humans including G-protein-coupled receptors (GPCRs), ion channel, enzymes, receptors, transporters, and other proteins. Also, classification-prediction models that predict the interactions between compounds and target proteins through a machine learning method were constructed using these matrices. As a result, AUC values of six classes are 0.94, 0.93, 0.90, 0.89, 0.91, and 0.76 respectively. Finally, the interactions of compounds from natural products were predicted using the constructed classification models. Furthermore, from our predicted results, we confirmed that several important disease related proteins were predicted as targets of natural herbal compounds.ConclusionsWe constructed classification-prediction models that predict the interactions between compounds and target proteins. The constructed models showed good prediction performances, and numbers of potential natural compounds target proteins were predicted from our results.
Identifying unexpected drug interactions is an essential step in drug development. Most studies focus on predicting whether a drug pair interacts or is effective on a certain disease without considering the mechanism of action (MoA). Here, we introduce a novel method to infer effects and interactions of drug pairs with MoA based on the profiling of systemic effects of drugs. By investigating propagated drug effects from the molecular and phenotypic networks, we constructed profiles of 5,441 approved and investigational drugs for 3,833 phenotypes. Our analysis indicates that highly connected phenotypes between drug profiles represent the potential effects of drug pairs and the drug pairs with strong potential effects are more likely to interact. When applied to drug interactions with verified effects, both therapeutic and adverse effects have been successfully identified with high specificity and sensitivity. Finally, tracing drug interactions in molecular and phenotypic networks allows us to understand the MoA.
Electronic Health Records (EHRs) enable the sharing of patients’ medical data. Since EHRs include patients’ private data, access by researchers is restricted. Therefore k-anonymity is necessary to keep patients’ private data safe without damaging useful medical information. However, k-anonymity cannot prevent sensitive attribute disclosure. An alternative, l-diversity, has been proposed as a solution to this problem and is defined as: each Q-block (ie, each set of rows corresponding to the same value for identifiers) contains at least l well-represented values for each sensitive attribute. While l-diversity protects against sensitive attribute disclosure, it is limited in that it focuses only on diversifying sensitive attributes. The aim of the study is to develop a k-anonymity method that not only minimizes information loss but also achieves diversity of the sensitive attribute. This paper proposes a new privacy protection method that uses conditional entropy and mutual information. This method considers both information loss as well as diversity of sensitive attributes. Conditional entropy can measure the information loss by generalization, and mutual information is used to achieve the diversity of sensitive attributes. This method can offer appropriate Q-blocks for generalization. We used the adult database from the UCI Machine Learning Repository and found that the proposed method can greatly reduce information loss compared with a recent l-diversity study. It can also achieve the diversity of sensitive attributes by counting the number of Q-blocks that have leaks of diversity. This study provides a privacy protection method that can improve data utility and protect against sensitive attribute disclosure. The method is viable and should be of interest for further privacy protection in EHR applications.
While several studies have explored nutrient intake and dietary habits associated with depression, few studies have reflected recent trends and demographic factors. Therefore, we examined how nutrient intake and eating habits are associated with depression, according to gender and age. We performed simple and multiple regressions using nationally representative samples of 10,106 subjects from the Korea National Health and Nutrition Examination Survey. The results indicated that cholesterol, dietary fiber, sodium, frequency of breakfast, lunch, dinner, and eating out were significantly associated with depression (p-value < 0.05). Moreover, depression was associated with nutrient intake and dietary habits by gender and age group: sugar, breakfast, lunch, and eating out frequency in the young women’s group; sodium and lunch frequency among middle-age men; dietary fibers, breakfast, and eating out frequency among middle-age women; energy, moisture, carbohydrate, lunch, and dinner frequency in late middle-age men; breakfast and lunch frequency among late middle-age women; vitamin A, carotene, lunch, and eating out frequency among older age men; and fat, saturated fatty acids, omega-3 fatty acid, omega-6 fatty acid, and eating out frequency among the older age women’s group (p-value < 0.05). This study can be used to establish dietary strategies for depression prevention, considering gender and age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.