With the growing popularity of cloud gaming and cloud virtual reality (VR), interactive 3D applications have become a major type of workloads for the cloud. However, despite their growing importance, there is limited public research on how to design cloud systems to efficiently support these applications, due to the lack of an open and reliable research infrastructure, including benchmarks and performance analysis tools. The challenges of generating human-like inputs under various system/application randomness and dissecting the performance of complex graphics systems make it very difficult to design such an infrastructure. In this paper, we present the design of a novel research infrastructure, Pictor, for cloud 3D applications and systems. Pictor employs AI to mimic human interactions with complex 3D applications. It can also track the processing of user inputs to provide indepth performance measurements for the complex software and hardware stack used for cloud 3D-graphics rendering. With Pictor, we designed a benchmark suite with six interactive 3D applications. Performance analyses were conducted with these benchmarks to characterize 3D applications in the cloud and reveal new performance bottlenecks. To demonstrate the effectiveness of Pictor, we also implemented two optimizations to address two performance bottlenecks discovered in a state-of-the-art cloud 3D-graphics rendering system, which improved the frame rate by 57.7% on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.