Maintenance of soil organic carbon (SOC) is important for the long-term productivity of agroecosystems. An investigation was conducted to study the effects of long-term application of inorganic fertilizers and farmyard manure (FYM) on soil organic carbon (SOC), nitrogen, phosphorus, and potassium nutrient content, water-stable aggregate distribution, and aggregateassociated carbon in a field experiment started in 1982 in an arid region of northwest China. Application of inorganic fertilizer alone (N, NP, or NPK treatments) did not increase SOC concentrations compared with no application of fertilizers (CK) and SOC concentration was significantly reduced, by 18% on average, compared with the initial value at the beginning of the experiment. Application of imbalanced inorganic fertilizer (N and NP), especially, resulted in a significant decrease in available phosphorus and potassium nutrients at a depth of 20 cm. This indicates that long-term application of inorganic fertilizers were inadequate to maintain levels of SOC and nutrients under conventional management with no aboveground crop residues returning to the soil. Long-term application of FYM alone or combined with inorganic fertilizers (M (FYM), MN, MNPK, or MNPK treatments), however, improved SOC and total nitrogen concentrations from initial values of 12.1 and 0.76 g kg -1 , respectively, to 15.46 and 1.28 g kg -1 , on average, and also enhanced available nitrogen, phosphorus, and potassium concentrations by 47, 50, and 68%, respectively, during the 23-year period. Treatment with FYM resulted in a 0.48 mm greater average mean weight diameter (MWD) of aggregates and a higher percentage of macro-aggregates (>2 mm) and small macroaggregates (2-0.25 mm) than treatment without FYM. The MWD increased with increasing SOC concentration (R 2 =0.75). The SOC concentration was highest in small macro-aggregates, intermediate in macro-aggregates, and lowest in microaggregates (0.25-0.05 mm). Approximately 54-60% of total SOC was stored in micro-aggregates (0.25-0.05 mm) and sand+silt fractions ( < 0.05 mm) after treatment without FYM but 57-64% of total SOC was stored in macroaggregates (>0.25 mm) after treatment with FYM. MNPK treatment had the greatest effect on improving the levels of SOC and NPK nutrients and in enhancing the formation and stability of macro-aggregates.
tion of fertilization has reached 50 to 60% of the total increase in grain yields in China (Lu and Shi, 1998). A long-term (1982 to 2000) field experiment was conducted at Continued increases in agricultural production would Zhangye, Gansu, China, on a sandy clay loam (Typic Anthrosol) under require increased supply of irrigation water as well as wheat (Triticum aestivum L.)-wheat-corn (Zea mays L.) rotation to fertilizers. However, some studies have shown that condetermine the effects of N, P, and K chemical fertilizers and farmyard manure (M) on grain and straw yield, harvest index (HI), protein
Long‐term applications of inorganic fertilizers and farmyard manure influence organic matter as well as other soil‐quality parameters, but the magnitude of change depends on soil‐climatic conditions. Effects of 22 annual applications (1982–2003) of N, P, and K inorganic fertilizers and farmyard manure (M) on total organic carbon (TOC) and nitrogen (TON), light‐fraction organic C (LFOC) and N (LFON), microbial‐biomass C (MB‐C) and N (MB‐N), total and extractable P, total and exchangeable K, and pH in 0–20 cm soil, nitrate‐N (NO$ _3^- $‐N) in 0–210 cm soil, and N, P, and K balance sheets were determined using a field experiment established in 1982 on a calcareous desert soil (Orthic Anthrosol) at Zhangye, Gansu, China. A rotation of irrigated wheat (Triticum aestivum L.)‐wheat‐corn (Zea mays L.) was used to compare the control, N, NP, NPK, M, MN, MNP, and MNPK treatments. Annual additions of inorganic fertilizers for 22 y increased mass of LFON, MB‐N, total P, extractable P, and exchangeable K in topsoil. This effect was generally enhanced with manure application. Application of manure also increased mass of TOC and MB‐C in soil, and tended to increase LFOC, TON, and MB‐N. There was no noticeable effect of fertilizer and manure application on soil pH. There was a close relationship between some soil‐quality parameters and the amount of C or N in straw that was returned to the soil. The N fertilizer alone resulted in accumulation of large amounts of NO$ _3^- $‐N at the 0–210 cm soil depth, accounting for 6% of the total applied N, but had the lowest recovery of applied N in the crop (34%). Manure alone resulted in higher NO$ _3^- $‐N in the soil profile compared with the control, and the MN treatment had the highest amount of NO$ _3^- $‐N in the soil profile. Application of N in combination with P and/or K fertilizers in both manured and unmanured treatments usually reduced NO$ _3^- $‐N accumulation in the soil profile compared with N alone and increased the N recovery in the crop as much as 66%. The N that was unaccounted for, as a percentage of applied N, was highest in the N‐alone treatment (60%) and lowest in the NPK treatment (30%). In the manure + chemical fertilizer treatments, the unaccounted N ranged from 35% to 43%. Long‐term P fertilization resulted in accumulation of extractable P in the surface soil. Compared to the control, the amount of P in soil‐plant system was surplus in plots that received P as fertilizer and/or manure, and the unaccounted P as percentage of applied P ranged from 64% to 80%. In the no‐manure plots, the unaccounted P decreased from 72% in NP to 64% in NPK treatment from increased P uptake due to balanced fertilization. Compared to the control, the amount of K in soil‐plant system was deficit in NPK treatment, i.e., the recovery of K in soil + plant was more than the amount of applied K. In manure treatments, the recovery of applied K in crop increased from 26% in M to 61% in MNPK treatment, but the unaccounted K decreased from 72% in M to 37% in MNPK treatment. The findings indicated that integrated application of N, P, and K fertilizers and manure is an important strategy to maintain or increase soil organic C and N, improve soil fertility, maintain nutrients balance, and minimize damage to the environment, while also improving crop yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.