Control of exhaust emission and combustion efficiency depend directly on the atomization of the liquid. The research on the atomizing performance of fuel nozzle is certainly important. A model using VOF-LES method has been built to investigate sheet breakup behavior of the main circuit of a pressure swirl atomizer. LES which takes into account of turbulence of fuel and air, has been used to simulate the phenomenon of sheet breakup. Vivid gas-liquid interface, instability wave and primary breakup phenomenon have been captured. The patterns of the sheet breaking-up change with different fuel flux. The mechanism of sheet breakup has been analyzed by combining variations of velocity and turbulent kinetic energy with Kelvin-Helmholtz instability theory and turbulence on circumference. The breakup length captured by simulation agrees well with the results of the semi-empirical formulas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.