Trogocytosis occurs when one cell contacts and quickly nibbles another cell and is characterized by contact between living cells and rapid transfer of membrane fragments with functional integrity. Many immune cells are involved in this process, such as T cells, B cells, NK cells, APCs. The transferred membrane molecules including MHC molecules, costimulatory molecules, receptors, antigens, etc. An increasing number of studies have shown that trogocytosis plays an important role in the immune system and the occurrence of relevant diseases. Thus, whether trogocytosis is a friend or foe of the immune system is puzzling, and the precise mechanism underlying it has not yet been fully elucidated. Here, we provide an integrated view of the acquired findings on the connections between trogocytosis and the immune system.
Schistosomes infect more than 200 million people worldwide, and globally, over 700 million people are at risk of infection. The snail Biomphalaria straminea, as one of the intermediate hosts of Schistosoma mansoni, consecutively invaded Hong Kong in 1973, raising great concern in China. In this study, a malacological survey was conducted over a period of four years, and investigations were performed on the mechanism of susceptibility of B. straminea to S. mansoni. B. straminea was investigated in China from 2014 to 2018. Out of 185 investigated sites, 61 were positive for stages of black B. straminea (BBS), which shows pigmented spots. Twenty of the 61 sites were positive for red B. straminea (RBS), which is partially albino and red colored. Phylogenetic analyses based on cox1 and 18S rRNA sequences demonstrated that both phenotypes were clustered with Brazilian strains. No S. mansoni infections were detected in field-collected snail. However, in laboratory experiments, 4.17% of RBS were susceptible to a Puerto Rican strain of S. mansoni, while BBS was not susceptible. The highest susceptibility rate (70.83%) was observed in the F2 generation of RBS in lab. The density of RBS has increased from south to north and from west to east in Guangdong since 2014. Five tyrosinase tyrosine metabolism genes were upregulated in BBS. Transcriptome comparisons of RBS and BBS showed that ficolin, C1q, MASPlike, and membrane attack complex (MAC)/perforin models of the complement system were significantly upregulated in BBS. Our study demonstrated that B. straminea is widely distributed in Hong Kong and Guangdong Province, which is expanding northwards very rapidly as a consequence of its adaptation to local environments. Our results suggest that B.
Parasitic infection can induce pathological injuries and impact the gut microbiota diversity and composition of the host. Bacillus subtilis is a nonpathogenic and noninvasive probiotic bacterium for humans and other animals, playing an important role in improving the host immune system’s ability to respond to intestinal and liver diseases and modulating gut microbiota. However, whether B. subtilis can impact biological functions in Schistosoma japonicum–infected mice is unclear. This study used oral administration (OA) of B. subtilis to treat mice infected with S. japonicum. We evaluated changes in the gut microbiota of infected mice using 16 S rRNA gene sequencing and differentially expressed gene profiles using transcriptome sequencing after OA B. subtilis. We found that OA B. subtilis significantly attenuated hepatic and intestinal pathological injuries in infected mice. The gut microbiota of mice were significantly altered after S. japonicum infection, while OA B. subtilis remodel the diversity and composition of gut microbiomes of infected mice. We found that the S. japonicum–infected mice with OA B. subtilis had an overabundance of the most prevalent bacterial genera, including Bacteroides, Enterococcus, Lactobacillus, Blautia, Lachnoclostridium, Ruminiclostridium, and Enterobacter. Transcriptomic analysis of intestinal tissues revealed that OA B. subtilis shaped the intestinal microenvironment of the host responding to S. japonicum infection. Differentially expressed genes were classified into KEGG pathways between S. japonicum–infected mice and those without included cell adhesion molecules, intestinal immune network for IgA production, hematopoietic cell lineage, Fc epsilon RI signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, calcium signaling pathway, Fc gamma R-mediated phagocytosis, chemokine signaling pathway, phospholipase D signaling pathway, NF-kappa B signaling pathway, B cell receptor signaling pathway, pancreatic secretion, and phagosome. In conclusion, our findings showed that OA B. subtilis alleviates pathological injuries and regulates gene expression, implying that B. subtilis supplementation may be a potential therapeutic strategy for schistosomiasis. Our study may highlight the value of probiotics as a beneficial supplementary therapy during human schistosomiasis, but further studies are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.