In this sequence of two papers, we introduce a curvature flow on (mixed) weighted graphs which is based on the Bakry-Émery calculus. The flow is described via a time-continuous evolution through the weighting schemes. By adapting this flow to preserve the Markovian property, its limits turn out to be curvature sharp. Our aim is to present the flow in the most general case of not necessarily reversible random walks allowing laziness, including vanishing transition probabilities along some edges ("degenerate" edges). This approach requires to extend all concepts (in particular, the Bakry-Émery curvature related notions) to this general case and it leads to a distinction between the underlying topology (a mixed combinatorial graph) and the weighting scheme (given by transition rates). We present various results about curvature sharp vertices and weighted graphs as well as some fundamental properties of this new curvature flow.This paper is accompanied by a second paper discussing the curvature flow implementation in Python for practical use. In this second paper we present examples and exhibit further properties of the flow.
In this paper, we compare Ollivier–Ricci curvature and Bakry–Émery curvature notions on combinatorial graphs and discuss connections to various types of Ricci flatness. We show that nonnegativity of Ollivier–Ricci curvature implies the nonnegativity of Bakry–Émery curvature under triangle‐freeness and an additional in‐degree condition. We also provide examples that both conditions of this result are necessary. We investigate relations to graph products and show that Ricci flatness is preserved under all natural products. While nonnegativity of both curvatures is preserved under Cartesian products, we show that in the case of strong products, nonnegativity of Ollivier–Ricci curvature is only preserved for horizontal and vertical edges. We also prove that all distance‐regular graphs of girth 4 attain their maximal possible curvature values.
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
In this paper, we reformulate the Bakry-Émery curvature on a weighted graph in terms of the smallest eigenvalue of a rank one perturbation of the so-called curvature matrix using Schur complement. This new viewpoint allows us to show various curvature function properties in a very conceptual way. We show that the curvature, as a function of the dimension parameter, is analytic, strictly monotone increasing and strictly concave until a certain threshold after which the function is constant. Furthermore, we derive the curvature of the Cartesian product using the crucial observation that the curvature matrix of the product is the direct sum of each component. Our approach of the curvature functions of graphs can be employed to establish analogous results for the curvature functions of weighted Riemannian manifolds. Moreover, as an application, we confirm a conjecture (in a general weighted case) of the fact that the curvature does not decrease under certain graph modifications.
We introduce the notion of Bonnet-Myers and Lichnerowicz sharpness in the Ollivier Ricci curvature sense. Our main result is a classification of all self-centered Bonnet-Myers sharp graphs (hypercubes, cocktail party graphs, even-dimensional demi-cubes, Johnson graphs J(2n, n), the Gosset graph and suitable Cartesian products). We also present a purely combinatorial reformulation of this result. We show that Bonnet-Myers sharpness implies Lichnerowicz sharpness. We also relate Bonnet-Myers sharpness to an upper bound of Bakry-Émery ∞-curvature, which motivates a general conjecture about Bakry-Émery ∞-curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.