Chemists have created molecular machines and switches with specific mechanical responses that were typically demonstrated in solution, where mechanically relevant motion is dissipated in the Brownian storm. The next challenge consists of designing specific mechanisms through which the action of individual molecules is transmitted to a supramolecular architecture, with a sense of directionality. Cellular microtubules are capable of meeting such a challenge. While their capacity to generate pushing forces by ratcheting growth is well known, conversely these versatile machines can also pull microscopic objects apart through a burst of their rigid tubular structure. One essential feature of this disassembling mechanism is the accumulation of strain in the tubules, which develops when tubulin dimers change shape, triggered by a hydrolysis event. We envision a strategy toward supramolecular machines generating directional pulling forces by harnessing the mechanically purposeful motion of molecular switches in supramolecular tubules. Here, we report on wholly synthetic, water-soluble, and chiral tubules that incorporate photoswitchable building blocks in their supramolecular architecture. Under illumination, these tubules display a nonlinear operation mode, by which light is transformed into units of strain by the shape changes of individual switches, until a threshold is reached and the tubules unleash the strain energy. The operation of this wholly synthetic and stripped-down system compares to the conformational wave by which cellular microtubules disassemble. Additionally, atomistic simulations provide molecular insight into how strain accumulates to induce destabilization. Our findings pave the way toward supramolecular machines that would photogenerate pulling forces, at the nanoscale and beyond.artificial molecular switches | supramolecular polymers | supramolecular machines | light
Supramolecular architectures that work out-of-equilibrium or that can change in specific ways when absorbing external energy are ubiquitous in nature. Gaining the ability to create via selfassembly artificial materials possessing such fascinating behaviors would have a major impact in many fields. However, the rational design of similar dynamic structures requires to understand and, even more challenging, to learn how to master the molecular mechanisms governing how the assembled systems evolve far from the equilibrium. Typically, this represents a daunting challenge due to the limited molecular insight that can be obtained by the experiments or by classical modeling approaches. Here we combine coarse-grained molecular models and advanced simulation approaches to study at submolecular (<5 Å) resolution a supramolecular tubule, which breaks and disassembles upon absorption of light energy triggering isomerization of its azobenzene-containing monomers. Our approach allows us to investigate the molecular mechanism of monomer transition in the assembly and to elucidate the kinetic process for the accumulation of the transitions in the system. Despite the stochastic nature of the excitation process, we demonstrate how these tubules preferentially dissipate the absorbed energy locally via the amplification of defects in their supramolecular structure. We find that this constitutes the best kinetic pathway for accumulating monomer transitions in the system, which determines the dynamic evolution out-of-equilibrium and the brittle behavior of the assembly under perturbed conditions. Thanks to the flexibility of our models, we finally come out with a general principle, where defects explain and control the brittle/ soft behavior of such light-responsive assemblies.
The motion of artificial molecular machines has been amplified into the shape transformation of polymer materials that have been compared to muscles, where mechanically active molecules work together to produce a contraction. In spite of this progress, harnessing cooperative molecular motion remains a challenge in this field. Here, we show how the light-induced action of artificial molecular switches modifies not only the shape but also, simultaneously, the stiffness of soft materials. The heterogeneous design of these materials features inclusions of free liquid crystal in a liquid crystal polymer network. When the magnitude of the intrinsic interfacial tension is modified by the action of the switches, photo-stiffening is observed, in analogy with the mechanical response of activated muscle fibers, and in contrast to melting mechanisms reported so far. Mechanoadaptive materials that are capable of active tuning of rigidity will likely contribute to a bottom-up approach towards human-friendly and soft robotics.
We present the design and synthesis of spiropyran-based dynamic vesicles, for which the building block is the amphiphilic merocyanine isomer. Under irradiation with visible light, the photo-conversion of the protonated and charged merocyanine to the neutral spiropyran form leads to the transient and reversible expansion of these vesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.