Purpose: Voltage-gated Kv potassium channels, like ether a go-go (EAG) channels, have been recognized for their oncogenic potential in breast cancer and other malignant tumors. Experimental Design: We examined the molecular and functional expression of Kv channels in human colonic cancers and colon of mice treated with the chemical carcinogens dimethylhydrazine and N-methyl-N-nitrosourea. The data were compared with results from control mice and animals with chemically induced DSS colitis. Results: Electrogenic salt transport by amiloride-sensitive Na + channels and cyclic AMPâ ctivated cystic fibrosis transmembrane conductance regulator Cl À channels were attenuated during tumor development and colitis, whereas Ca 2+
High physiological prolactin induced positive calcium balance by stimulating intestinal calcium absorption, reducing renal calcium excretion, and increasing bone calcium deposition in female rats. Although prolactin-induced increase in trabecular bone calcium deposition was absent after ovariectomy, its effects on cortical bones were still controversial. The present investigation, therefore, aimed to study the effect of in vivo long-term high physiological prolactin induced by either anterior pituitary (AP) transplantation or 2.5 mg/kg prolactin injection on cortical bones in ovariectomized rats. Since the presence of prolactin receptors (PRLR) in different bones of normal adult rats has not been reported, we first determined mRNA expression of both short- and long-form PRLRs at the cortical sites (tibia and femur) and trabecular sites (calvaria and vertebrae) by using the RT-PCR. Our results showed the mRNA expression of both PRLR isoforms with predominant long form at all sites. However, high prolactin levels induced by AP transplantation in normal rats did not have any effect on the femoral bone mineral density or bone mineral content. By using 45Ca kinetic study, 2.5 mg/kg prolactin did not alter bone formation, bone resorption, calcium deposition, and total calcium content in tibia and femur of adult ovariectomized rats. AP transplantation also had no effect on the cortical total calcium content in adult ovariectomized rats. Because previous work showed that the effects of prolactin were age dependent and could be modulated by high-calcium diet, interactions between prolactin and these two parameters were investigated. The results demonstrated that 2.0% wt/wt high-calcium diet significantly increased the tibial total calcium content in 9-wk-old young AP-grafted ovariectomized rats but decreased the tibial total calcium content in 22-wk-old adult rats. As for the vertebrae, the total calcium contents in both young and adult rats were not changed by high-calcium diet. The present results thus indicated that the adult cortical bones were potentially direct targets of prolactin. Moreover, the effects of high physiological prolactin on cortical bones were age dependent and were observed only under the modulation of high-calcium diet condition.
The lactogenic hormone prolactin (PRL) has been known to affect Ca2+ and electrolyte transport in the intestinal epithelium. In the present study we analyzed ion transport in mouse proximal and distal colon, and acute changes induced by PRL. In the proximal colon, carbachol activated a Ca2+ dependent Cl- secretion that was sensitive to DIDS and NFA. In the distal colon, both ATP and carbachol activated K+ secretion. Ca2+ -activated KCl transport in proximal and distal colon was inhibited by PRL (200ng/ml), while amiloride sensitive Na+ absorption and cAMP induced Cl- secretion remained unaffected. Luminal large conductance Ca2+ -activated K+ (BK) channels were largely responsible for Ca2+ -activated K+ secretion in the distal colon, and basolateral BK channels supported Ca2+ -activated Cl- secretion in the proximal colon. Ca2+ chelating by BAPTA-AM attenuated effects of carbachol and abolished effects of PRL. Both inhibition of PI3 kinase with wortmannin and blockage of MAP kinases with SB 203580 or U 0126, interfered with the acute inhibitory effect of PRL on ion transport, while blocking of Jak/Stat kinases with AG 490 was without effects. PRL attenuated the increase in intracellular Ca2+ that was caused by stimulation of isolated colonic crypts with carbachol. Thus PRL inhibits Ca2+ dependent Cl- and K+ secretion by interfering with intracellular Ca2+ signaling and probably by activating PI3 kinase and MAP kinase pathways.
Although an increase in trabecular-bone calcium deposition has been shown to be regulated by prolactin during lactation, the physiological significance of prolactin in bone calcium metabolism in nonlactating rats remains unclear. This investigation sought to demonstrate the effects of endogenous prolactin and a high physiological dose of exogenous prolactin on bone turnover and bone calcium deposition in normal female rats, using the 45Ca-labeling technique. Our results showed that suppression of endogenous prolactin with 6 mg/kg bromocriptine for 15 days significantly enhanced bone formation, but not bone resorption, in primarily trabecular sites, resulting in a significant increase in calcium deposition in the sternum and vertebrae, from -0.20+/-0.07 to 0.40+/-0.09 (p<0.05) and -0.07+/-0.11 to 0.34+/-0.06 (p<0.05) mmol Ca.(g dry mass)-1, respectively. Similarly, 2.5 mg/kg prolactin, a high physiological dose, increased sternal and vertebral calcium deposition, from -0.20+/-0.07 to 0.24+/-0.09 (p<0.05) and -0.07+/-0.11 to 0.25+/-0.18 (p<0.05) mmol Ca.(g dry mass)-1, respectively, by increasing bone formation more than bone resorption. However, as expected, prolactin had no effect on the tibia or femur, which are primarily cortical sites. Because several actions of prolactin have been known to be estradiol-dependent, we further investigated the dependence of prolactin action on 17beta-estradiol. We found that 2.5 mg/kg prolactin did not increase sternal calcium deposition in ovariectomized rats. However, 10 microg/kg 17beta-estradiol supplementation restored the action of prolactin. Ovariectomized rats given 17beta-estradiol plus prolactin also manifested slightly but significantly higher sternal total calcium content than sham-operated rats, (4.58+/-0.12 vs. 4.36+/-0.11 mmol Ca.(g dry mass)-1 (p<0.05)). We concluded that a high physiological dose of prolactin promoted calcium deposition in primarily trabecular sites of nonlactating rats. This effect was diminished after ovariectomy. In addition, we showed that basal endogenous prolactin played a role in the maintenance of normal trabecular-bone turnover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.