Waxy corn is a popular, alternative staple food in most Asian countries including Thailand. The availability of small-ear waxy corn genotypes with prolific ears and a high level of carotenoids is expected to benefit growers and consumers. Integrated evaluation among source germplasm is essential before performing further breeding efforts for enhancing prolific ears and high-carotenoid content. Thus, the present study explored the variability of ear prolificacy, total carotenoids, lutein, zeaxanthin, and beta-carotene among yellow small-ear waxy corn accessions. About 44 corn accessions and 4 check varieties were evaluated for agronomic traits and yield components under multienvironment trials in a randomized complete block design (RCBD). The immature seed sample of these genotypes was analyzed to quantify the content of total carotenoids and some carotenoid fractions. All traits showed that low GXE interaction and significant genotypic diversity existed among all tested accessions with the predominant contribution of genotype to total phenotypic variation and beta-carotene. Accessions were clustered into four major groups based on the similarity of multiple carotenoids profiles. Three selected accessions (UT121001, KKU-WX112087, and KKU-WX212001) had higher values of total carotenoids, lutein, zeaxanthin, and beta-carotene than those of all check varieties. High and positive correlations among second-emerged ears, marketable second-emerged ears, and total ear number indicate that a higher chance of secondary ears becomes marketable ears with an increase of total ears per plant per hectare. Lutein and zeaxanthin had positive, strong correlations with total carotenoids. The implications and breeding strategies are discussed prior to promoting yellow small-ear waxy corn as a biofortified crop.
The study aimed to improve the small-ear waxy corn populations for prolificacy, high total carotenoid content and resistance to downy mildew. Three cycles of modified mass selection were carried out for population improvement. Forty-four genotypes derived from eight C3 populations and six check varieties were evaluated for agronomic traits and yield at Khon Kaen and screened for downy mildew resistance in the rainy season 2020 at two experimental sites in Ban Phang district of Khon Kaen province. Fifty genotypes were clustered into six major groups based on color parameter (h°) and total ear number. Two selected groups (C and E) with two populations of small-ear waxy corn including Nei9008/BK-24-9-B and TY/TF-33-1-B were selected as they were resistant to downy mildew, prolific ears, and intense orange kernel color. Modified mass selection was effective for improvement of multiple traits in waxy corn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.