<p>The manual shelling process was felt to be inefficient. Therefore, it was necessary to improve the mechanical process by making a coconut desheller machine. The purpose of this study was to design a coconut desheller machine that can produce clean coconut meat. The study was conducted in 2016 in the workshop of the Manado Industrial Research and Standardization Center and a trial at the PT. Royal Coconut, Airmadidi, North Minahasa. The design of the machine was based on the process of manually removing using machetes or kelewang. After the design was complete, a performance test of coconut shell removal was carried out with three replications. Observations consisted of: machine capacity and coconut quality (cleanliness of coconut shells and broken coconut). The data obtained were analyzed descriptively. The coconut desheller machine that was designed has components such as flywheel discs, oversized knives, drive motors, reducers and frame/tool holders. Flywheel consists of 64 pieces of chisel with a 26 degree slope. The distance between the Flywheel and the kelewang knife was 1.5 cm. Overall, the machine tool produced has a length of 70 cm, width 70 cm and height 115 cm, made of stainless steel (SS), iron plate and iron elbow. Based on the results of the trial, the machine has an average capacity of 78 coconuts in 10 minutes, 264 coconuts in 30 minutes, and 663 coconuts in 60 minutes. The broken coconut produced is around 3,4-3,8%. There was already a coconut desheller machine, but a large investment was needed for the installation due to the unavailability of a local coconut desheller machine. So that only large coconut flour industries can use coconut desheller machines. This Baristand Manado coconut desheller model machine can be a solution and can be used by middle industry groups, especially the dry grated coconut industry (coconut flour) or Small and Medium Enterprises.</p><p align="center"><strong>ABSTRAK</strong></p><p>Proses pencungkilan tempurung secara manual dirasakan kurang efisien. Oleh karena itu, perlu dilakukan perbaikan proses mekanis yaitu dengan membuat mesin pencungkil tempurung kelapa. Tujuan penelitian ini adalah untuk mendesain mesin pencungkil tempurung kelapa yang dapat menghasilkan daging kelapa yang bersih. Penelitian dilaksanakan pada tahun 2016 di bengkel Balai Riset dan Standardisasi Industri Manado serta uji coba di pabrik PT. Royal Coconut, Airmadidi, Minahasa Utara. Desain alat didasarkan pada proses pencungkilan secara manual memakai parang atau kelewang. Setelah rancang bangun selesai, maka dilakukan uji kinerja pencungkilan tempurung kelapa dengan tiga kali ulangan. Pengamatan terdiri dari: kapasitas mesin dan kualitas kelapa (kebersihan cangkang kelapa dan kelapa pecah). Data yang diperoleh dianalisis secara deskriptif. Mesin pencungkil tempurung kelapa yang dirancang memiliki komponen yaitu piringan roda gila atau Flywheel, pisau kelewang, motor penggerak, reducer dan rangka/dudukan alat. Flywheel terdiri dari mata pahat berjumlah 64 buah dengan sudut kemiringan 26 derajat. Jarak antara Flywheel dengan pisau kelewang adalah 1,5 cm. Secara keseluruhan, alat mesin yang dihasilkan memiliki ukuran panjang 70 cm, lebar 70 cm dan tinggi 115 cm, terbuat dari bahan stainless steel (ss), plat besi dan besi siku. Berdasarkan hasil ujicoba, mesin memiliki kapasitas rata-rata 78 kelapa dalam 10 menit, 264 kelapa dalam 30 menit, dan 663 kelapa dalam 60 menit. Kelapa pecah yang dihasilkan sekitar 3,4-3,8%. Alat mesin pencungkil tempurung kelapa memang sudah ada, tetapi dibutuhkan investasi yang besar untuk instalasi dikarenakan belum tersedianya alat mesin pencungkil kelapa secara lokal. Sehingga hanya industri-industri tepung kelapa besar yang bisa menggunakan mesin pencungkil tempurung kelapa. Alat mesin pencungkil tempurung kelapa model Baristand Manado ini bisa menjadi solusi dan dapat digunakan oleh kelompok industri menengah khususnya industri kelapa parut kering (tepung kelapa) atau Usaha Kecil Menengah.</p>
ABSTRAKCadangan minyak bumi yang makin menipis dan makin meningkatnya kebutuhan energi serta dampak pencemaran lingkungan penggunaan energi dari minyak bumi, telah mendorong pengembangan sumber energi terbarukan antara lain bioetanol. Tujuan penelitian untuk mendesain unit pengolahan bioetanol skala kecil untuk menghasilkan bioetanol sebagai bahan bakar atau Fuel Grade Ethanol (FGE) yang praktis dioperasikan. Penelitian dilaksanakan pada Tahun 2013, di Laboratorium dan bengkel Balai Riset dan Standardisasi Industri Manado serta Bengkel Rekayasa Alat Balai Penelitian Tanaman Palma. Desain alat didasarkan pada alat pengolahan bioetanol dari aren sistem evaporatordestilator ganda, dan alat dehidrasi bioetanol menggunakan saringan molekuler zeolit dengan teknik vacuum swing absorbtion. Pengolahan FGE dengan suhu pemanasan terkontrol dan menggunakan saringan molekuler pada kolom dehidrator, proses pengolahan dilakukan sebanyak tiga kali. Pengamatan terdiri atas: desain alat (komponen alat, keragaman suhu unit operasi), dan kinerja alat (waktu kerja, laju alir bioetanol, rendemen, kehilangan hasil, dan mutu produk). Analisis data secara deskriptif. Hasil penelitian menunjukkan bahwa alat pengolahan bioetanol yang didesain dengan komponen utama adalah tangki evaporator, kolom dehidrator, dan kolom destilator. Pengolahan FGE menggunakan bahan baku bioetanol kadar 90%, suhu pemanasan unit operasi, yakni tangki evaporator 78-82 º C, kolom dehidrator 76-90 º C, dan kolom destilator 25-35 º C. FGE yang dihasilkan berkadar etanol 99,88% dan rendemen 92,13%. FGE memenuhi syarat mutu dan secara visual kenampakan jernih dan terang, tidak ada endapan dan kotoran. Alat pengolahan bioetanol model Baristand ini, lebih sesuai penggunaannya untuk kelompok tani atau Usaha Kecil Menengah. ABSTRACTThe development of renewable energy sources such as bioethanol was a major consideration, because of dwindling of unrenewable energy and increasing of energy needed. Utilization ofenergy from bioethanol was environmental friendly compared to fossil fuel. The objective of this research was to design small-scale bioethanol processing unit to produce bioethanol as a fuel or FGE which easily to be operated. The research was conducted at the Laboratory and Workshop of Research and Standardization of Industrial Institute Manado, and Equipment Engineeringof Indonesian Palms Crops Research Institute during 2013. The design of this machinery was based on to bioethanol processing unit through evaporator system-double distillation, and dehydration unit of bioethanol equipmet using molecular sieve zeolite with vacuum swing absorption techniques.Processing of FGE was equipped with controlled of temperature heating and utilization of molecular sieve for dehydrator column, processing. The process was evaluated for three times. The observed variables were design of tools (components, varianceof the operating unit temperature), and performance tools (working time, a flow rate of bioethanol, yield, losses and quality of the product). The datas were analysis by...
Makalah ini mengkaji kebijakan inventori pada perusahaan yang memiliki kapasitas gudang terbatas sehingga pengiriman barang harus dilakukan secara diskrit serta mempertimbangkan variasi biaya setup yang meningkat berdasarkan lama waktu produksi dan biaya penyimpanan yang meningkat sesuai fungsi waktu penyimpanan. Tujuan dari penelitian adalah untuk mengembangkan model Economic Production Quantity (EPQ) dan meminimasi total biaya inventori dengan mempertimbangkan faktor-faktor yang telah disebutkan sebelumnya. Terdapat dua kasus yang dikaji yaitu variasi biaya setup yang dikombinasikan dengan variasi biaya penyimpanan (H). Metode optimasi digunakan untuk mendapatkan waktu siklus (T) optimal. Berdasarkan T optimal yang dihasilkan, dihitung nilai waktu produksi (T p ), jumlah produksi (Q), jumlah pengiriman (m), kapasitas pengiriman (k), dan total biaya optimal. Perhitungan numerik menunjukkan bahwa 2 model yang dihasilkan dapat menurunkan total biaya secara keseluruhan. Penurunan nilai TC* terbesar dicapai pada saat β=1 dan ε=0,4 yaitu sebesar $3.967 (0,198%) untuk model 1 sedangkan untuk model 2, diperoleh pada saat β=1 yaitu sebesar $2.607 (0,130%).
Transportation costs are one of the largest cost components in distribution activities. Transportation costs can be reduced by improving distribution routes. The aims of this article are to minimize transportation costs by determining vehicle assignments and routing for heterogeneous vehicles. The constrains that considered are the number and capacity of the vehicle, fuel consumption, service time at the company and at customers plant. Total transportation costs are considered as vehicle fixed costs, fuel costs, and material handling costs. CVRPTW is applied to the problem of assigning and determining vehicle routes of plastic component companies that supply plastic components for various manufacturing companies in the Greater Jakarta area. CVRPTW can reduce transportation costs in the company while still meet all applicable constraints. CVRPTW reduced the number of vehicles used from the previous 6 vehicles to 5 vehicles. Total transportation costs for all shipping routes are Rp. 4,563,620. This cost is lower than the company costs of Rp. 4,694,100, this routing problem reduces transportation costs by 8% of the initial cost
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.