Mycosphaerella graminicola, incitant of septoria tritici blotch, is a widespread and significant pathogen of wheat that is not closely related to other fungi being developed as genetic models for host-pathogen interactions. Several resistance genes in wheat have been identified, yet the molecular mechanisms of resistance are unknown. To identify host genes involved in the resistance response, expression profiles of the wheat line Tadinia (containing the Stb4 gene for resistance) and the susceptible line Yecora Rojo, non-inoculated or inoculated with M. graminicola, were compared by differential-display polymerase chain reaction (DD-PCR). Among the differentially expressed genes was a protein disulfide isomerase (PDI), which is well known as a molecular chaperone and component of signal-transduction pathways in animal systems but had not been implicated previously in plant defense response. Real-time quantitative reverse-transcription PCR and northern analysis revealed that PDI was induced within 3 h of inoculation with highest induction in the pathogen-treated resistant lines. These responses of PDI were similar to the early and strong resistance-related responses displayed by the pathogenesis-related (PR) proteins, PR-1, PR-2 and PR-5. In contrast, a wheat lipoxygenase was down-regulated in the resistant lines at time points corresponding with peak induction of the PR genes. Thus, part of the resistance mechanism may involve repression of a gene that could otherwise aid fungal growth. Wheat responds much more rapidly than believed previously to signals produced by M.graminicola. These early responses begin prior to penetration of the host and appear to determine the outcome of the host-pathogen interaction.
Small open reading frames (smORFs) encoding ‘micropeptides’ exhibit remarkable evolutionary complexity. Conserved peptides encoded by mille-pattes (mlpt)/polished rice (pri)/tarsal less (tal) are essential for embryo segmentation in Tribolium but, in Drosophila, function in terminal epidermal differentiation and patterning of adult legs. Here, we show that a molecular complex identified in Drosophila epidermal differentiation, comprising Mlpt peptides, ubiquitin-ligase Ubr3 and transcription factor Shavenbaby (Svb), represents an ancient developmental module required for early insect embryo patterning. We find that loss of segmentation function for this module in flies evolved concomitantly with restriction of Svb expression in early Drosophila embryos. Consistent with this observation, artificially restoring early Svb expression in flies causes segmentation defects that depend on mlpt function, demonstrating enduring potency of an ancestral developmental switch despite evolving embryonic patterning modes. These results highlight the evolutionary plasticity of conserved molecular complexes under the constraints of essential genetic networks.Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (<xref ref-type="decision-letter" rid="SA1">see decision letter</xref>).
Truncating mutations affect the adenomatous polyposis coli (APC) gene in most cases of colon cancer, resulting in the stabilization of β-catenin and uncontrolled cell proliferation. We show here that colon cancer cell lines express also the paralog APC-like (APCL or APC2). RNA interference revealed that it controls the level and/or the activity of β-catenin, but it is less efficient and binds less well to β-catenin than APC, thereby providing one explanation as to why the gene is not mutated in colon cancer. A further comparison indicates that APCL down-regulates the β-catenin level despite the lack of the 15R region known to be important in APC. To understand this discrepancy, we performed immunoprecipitation experiments that revealed that phosphorylated β-catenin displays a preference for binding to the 15 amino acid repeats (15R) rather than the first 20 amino acid repeat of APC. This suggests that the 15R region constitutes a gate connecting the steps of β-catenin phosphorylation and subsequent ubiquitination/degradation. Using RNA interference and domain swapping experiments, we show that APCL benefits from the 15R of truncated APC to target β-catenin for degradation, in a process likely involving heterodimerization of the two partners. Our data suggest that the functional complementation of APCL by APC constitutes a substantial facet of tumour development, because the truncating mutations of APC in colorectal tumours from familial adenomatous polyposis (FAP) patients are almost always selected for the retention of at least one 15R.
The current investigation evaluates the expression of phosphatidylinositol kinase (PIK) genes in the parasitic protozoan, Giardia lamblia. The G. lamblia Genome Database revealed the presence of two putative phosphatidylinositol-3-kinase (gPI3K) and one phosphatidylinositol-4-kinase (gPI4K) genes resembling the catalytic subunit of eukaryotic PIKs. Primers, designed to amplify mRNA of these three genes, were used to measure transcription by quantitative reverse-transcriptase polymerase chain reactions. Results suggest that all three PIK genes are expressed in non-encysting and encysting trophozoites. The relative levels of the mRNA were highest in parasites cultured in pre-encysting medium that contained no bile. Two inhibitors of PI3K, LY 294002 and wortmannin were found to inhibit the growth of the trophozoite in culture. However, wortmannin was more effective than LY294002. Altogether, the present study indicates that Giardia is capable of expressing PIKs that are necessary for the growth and differentiation of this pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.