A novel radical shape change approach (Aerodynamically Actuated Radical Shape Change concept) was developed at NASA Langley Research Center. The radical shape change enables cruise at a lowered altitude of 15-25,000 feet and yields substantial performance and environmental benefits. This lowered altitude has however raised concerns in the community due to past experience with decreased ride quality in this altitude range. This paper describes the analysis performed by the team to address this concern. First, the team assessed and quantified turbulence occurrence as a function of altitude. Secondly, the team analyzed the effects of turbulence gust loads on the proposed concept when compared to conventional aircraft.
NomenclatureAARSC = Aerodynamically Actuated Radical Shape Change AIDS = Accident and Incident Data System AIRMET = Airmen's Meteorological Information CAT = Clear Air Turbulence FL = Flight Level G-AIRMET = Graphical Airmen's Meteorological Information OML = Outer Mold Line
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.