Machine and deep learning techniques are two branches of artificial intelligence that have proven very efficient in solving advanced human problems. The automotive industry is currently using this technology to support drivers with advanced driver assistance systems. These systems can assist various functions for proper driving and estimate drivers’ capability of stable driving behavior and road safety. Many studies have proved that the driver’s emotions are the significant factors that manage the driver’s behavior, leading to severe vehicle collisions. Therefore, continuous monitoring of drivers’ emotions can help predict their behavior to avoid accidents. A novel hybrid network architecture using a deep neural network and support vector machine has been developed to predict between six and seven driver’s emotions in different poses, occlusions, and illumination conditions to achieve this goal. To determine the emotions, a fusion of Gabor and LBP features has been utilized to find the features and been classified using a support vector machine classifier combined with a convolutional neural network. Our proposed model achieved better performance accuracy of 84.41%, 95.05%, 98.57%, and 98.64% for FER 2013, CK+, KDEF, and KMU-FED datasets, respectively.
According to the Center for Disease Control and Prevention (CDC), the average human life expectancy is 78.8 years. Specifically, 3.2 million deaths are reported yearly due to heart disease, cancer, Alzheimer’s disease, diabetes, and COVID-19. Diagnosing the disease is mandatory in the current way of living to avoid unfortunate deaths and maintain average life expectancy. CMOS image sensor (CIS) became a prominent technology in assisting the monitoring and clinical diagnosis devices to treat diseases in the medical domain. To address the significance of CMOS image ‘sensors’ usage in disease diagnosis systems, this paper focuses on the CIS incorporated disease diagnosis systems related to vital organs of the human body like the heart, lungs, brain, eyes, intestines, bones, skin, blood, and bacteria cells causing diseases. This literature survey’s main objective is to evaluate the ‘systems’ capabilities and highlight the most potent ones with advantages, disadvantages, and accuracy, that are used in disease diagnosis. This systematic review used PRISMA workflow for study selection methodology, and the parameter-based evaluation is performed on disease diagnosis systems related to the human body’s organs. The corresponding CIS models used in systems are mapped organ-wise, and the data collected over the last decade are tabulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.