Abstract. Water-soluble inorganic ions such as ammonium, nitrate and sulfate are major components of fine aerosols in the atmosphere and are widely used in the estimation of aerosol acidity. However, different experimental practices and instrumentation may lead to uncertainties in ion concentrations. Here, an intercomparison experiment was conducted in 10 different laboratories (labs) to investigate the consistency of inorganic ion concentrations and resultant aerosol acidity estimates using the same set of aerosol filter samples. The results mostly exhibited good agreement for major ions Cl−, SO42-, NO3-, NH4+ and K+. However, F−, Mg2+ and Ca2+ were observed with more variations across the different labs. The Aerosol Chemical Speciation Monitor (ACSM) data of nonrefractory SO42-, NO3- and NH4+ generally correlated very well with the filter-analysis-based data in our study, but the absolute concentrations differ by up to 42 %. Cl− from the two methods are correlated, but the concentration differ by more than a factor of 3. The analyses of certified reference materials (CRMs) generally showed a good detection accuracy (DA) of all ions in all the labs, the majority of which ranged between 90 % and 110 %. The DA was also used to correct the ion concentrations to showcase the importance of using CRMs for calibration check and quality control. Better agreements were found for Cl−, SO42-, NO3-, NH4+ and K+ across the labs after their concentrations were corrected with DA; the coefficient of variation (CV) of Cl−, SO42-, NO3-, NH4+ and K+ decreased by 1.7 %, 3.4 %, 3.4 %, 1.2 % and 2.6 %, respectively, after DA correction. We found that the ratio of anion to cation equivalent concentrations (AE / CE) and ion balance (anions–cations) are not good indicators for aerosol acidity estimates, as the results in different labs did not agree well with each other. In situ aerosol pH calculated from the ISORROPIA II thermodynamic equilibrium model with measured ion and ammonia concentrations showed a similar trend and good agreement across the 10 labs. Our results indicate that although there are important uncertainties in aerosol ion concentration measurements, the estimated aerosol pH from the ISORROPIA II model is more consistent.
Abstract. Water soluble inorganic ions such as ammonium, nitrate, and sulfate are major components of fine aerosols in the atmosphere and are widely used in the estimation of aerosol acidity. However, different experimental practices and instrumentation may lead to uncertainties in ion concentrations. Here, an inter-comparison experiment was conducted in 10 different laboratories (labs) to investigate the consistency of inorganic ion concentrations and resultant aerosol acidity estimates using the same set of aerosol filter samples. The results mostly exhibited good agreement for major ions Cl−, SO42−, NO3−, NH4+ and K+. However, F−, Mg2+ and Ca2+ were observed with more variations across the different labs. The Aerosol Chemical Speciation Monitor (ACSM) data of non-refractory SO42−, NO3−, NH4+ generally correlated very well with the filter analysis based data in our study, but the absolute concentrations differ by up to 42 %. Cl− from the two methods are correlated but the concentration differ by more than 3 times. The analyses of certified reference materials (CRMs) generally showed good recovery of all ions in all the labs, the majority of which ranged between 90 % and 110 %. Better agreements were found for Cl−, SO42−, NO3−, NH4+ and K+ across the labs after their concentrations were corrected with CRM recoveries; the coefficient of variation (CV) of Cl−, SO42−, NO3−, NH4+ and K+ decreased 1.7 %, 3.4 %, 3.4 %, 1.2 % and 2.6 %, respectively, after CRM correction. We found that the ratio of anion to cation equivalent concentrations (AE/CE) is not a good indicator for aerosol acidity estimates, as the results in different labs did not agree well with each other. Ion balance (anions – cations) calculated from SO42−, NO3− and NH4+ gave more consistent results, because of their relatively large concentrations and good agreement among different labs. In situ aerosol pH calculated from the ISORROPIA-II thermodynamic equilibrium model with measured ion and ammonia concentrations showed a similar trend and good agreement across the 10 labs. Our results indicate that although there are important uncertainties in aerosol ion concentration measurements, the estimated aerosol pH from the ISORROPIA-II model is more consistent.
Environmental context Airborne particulate matter (PM) is a major public health risk in Southeast Asia. The annual average concentration of fine PM (PM2.5) in the region is significantly higher than the WHO air quality guidelines, and higher PM2.5 levels were recorded during dry seasons, primarily due to biomass burning. In this paper, we provide an overview of the seasonal variations in concentrations, chemical compositions, and sources of PM in Southeast Asian countries. Abstract Airborne particulate matter (PM) in Southeast Asia is the most important air pollutant, causing millions of premature deaths. This review provides an overview of the levels, chemical compositions and sources of PM and compared these with studies from megacities in other regions. Daily average PM2.5 concentrations were lower than polluted megacities such as Delhi but substantially higher than 24-h mean air quality guideline of the WHO. Levels of PM2.5 in maritime continental Southeast Asia (Indonesia, Brunei, Malaysia, Philippines and Singapore) were lower than in mainland continental countries (Cambodia, Myanmar, Thailand, Vietnam, and Laos). PM levels are usually two times higher during dry than wet seasons. Organic carbon is a key chemical component, contributing 9–52% of PM mass. SO42−EN22044_IE1.gif, NO3−EN22044_IE2.gif, and NH4+EN22044_IE3.gif are major ions and NO3−EN22044_IE4.gif/SO42−EN22044_IE5.gif ratios were notably lower than in megacities in other regions, implying lower emissions from mobile relative to stationary sources. Source apportionment indicates biomass burning is one of the most important sources, particularly during the haze (dry) seasons, followed by road traffic emission in dense-traffic cities such as Bangkok, Kuala Lumpur and Hanoi. The secondary aerosols contribution to PM mass is usually lower than that in cities from other regions. We suggest future PM source apportionment studies in Southeast Asia to include both inorganic and organic tracers and apply both chemical mass balance and multivariate receptor models.
Abstract. The impact of heterogeneous uptake of HO2 on aerosol surfaces on radical concentrations and the O3 production regime in Beijing in summertime was investigated. The uptake coefficient of HO2 onto aerosol surfaces, γHO2, was calculated for the AIRPRO campaign in Beijing, in summer 2017, as a function of measured aerosol soluble copper concentration, [Cu2+]eff, aerosol liquid water content, [ALWC], and particulate matter concentration, [PM]. An average γHO2 across the entire campaign of 0.070±0.035 was calculated, with values ranging from 0.002 to 0.15, and found to be significantly lower than the value of γHO2=0.2, commonly used in modelling studies. Using the calculated γHO2 values for the summer AIRPRO campaign, OH, HO2 and RO2 radical concentrations were modelled using a box model incorporating the Master Chemical Mechanism (v3.3.1), with and without the addition of γHO2, and compared to the measured radical concentrations. The rate of destruction analysis showed the dominant HO2 loss pathway to be HO2 + NO for all NO concentrations across the summer Beijing campaign, with HO2 uptake contributing <0.3 % to the total loss of HO2 on average. This result for Beijing summertime would suggest that under most conditions encountered, HO2 uptake onto aerosol surfaces is not important to consider when investigating increasing O3 production with decreasing [PM] across the North China Plain. At low [NO], however, i.e. <0.1 ppb, which was often encountered in the afternoons, up to 29 % of modelled HO2 loss was due to HO2 uptake on aerosols when calculated γHO2 was included, even with the much lower γHO2 values compared to γHO2= 0.2, a result which agrees with the aerosol-inhibited O3 regime recently proposed by Ivatt et al. (2022). As such it can be concluded that in cleaner environments, away from polluted urban centres where HO2 loss chemistry is not dominated by NO but where aerosol surface area is high still, changes in PM concentration and hence aerosol surface area could still have a significant effect on both overall HO2 concentration and the O3 production regime. Using modelled radical concentrations, the absolute O3 sensitivity to NOx and volatile organic compounds (VOCs) showed that, on average across the summer AIRPRO campaign, the O3 production regime remained VOC-limited, with the exception of a few days in the afternoon when the NO mixing ratio dropped low enough for the O3 regime to shift towards being NOx-limited. The O3 sensitivity to VOCs, the dominant regime during the summer AIRPRO campaign, was observed to decrease and shift towards a NOx-sensitive regime both when NO mixing ratio decreased and with the addition of aerosol uptake. This suggests that if [NOx] continues to decrease in the future, ozone reduction policies focussing solely on NOx reductions may not be as efficient as expected if [PM] and, hence, HO2 uptake to aerosol surfaces continue to decrease. The addition of aerosol uptake into the model, for both the γHO2 calculated from measured data and when using a fixed value of γHO2=0.2, did not have a significant effect on the overall O3 production regime across the campaign. While not important for this campaign, aerosol uptake could be important for areas of lower NO concentration that are already in a NOx-sensitive regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.